Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung)     Collection: Abt. Schölkopf (Empirical Inference)     Display Documents



  history
ID: 596843.0, MPI für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung) / Abt. Schölkopf (Empirical Inference)
Causal Influence of Gamma Oscillations on the Sensorimotor Rhythm
Authors:Grosse-Wentrup, M.; Schölkopf, B.; Hill, J.
Date of Publication (YYYY-MM-DD):2011-05-01
Title of Journal:NeuroImage
Volume:56
Issue / Number:2
Start Page:837
End Page:842
Review Status:not specified
Audience:Not Specified
Intended Educational Use:No
Abstract / Description:Gamma oscillations of the electromagnetic field of the brain are known to be involved in a variety of cognitive processes, and are believed to be fundamental for information processing within the brain. While gamma oscillations have been shown to be correlated with brain rhythms at different frequencies, to date no empirical evidence has been presented that supports a causal influence of gamma oscillations on other brain rhythms. In this work, we study the relation of gamma oscillations and the sensorimotor rhythm (SMR) in healthy human subjects using electroencephalography. We first demonstrate that modulation of the SMR, induced by motor imagery of either the left or right hand, is positively correlated with the power of frontal and occipital gamma oscillations, and negatively correlated with the power of centro-parietal gamma oscillations. We then demonstrate that the most simple causal structure, capable of explaining the observed correlation of gamma oscillations and the SMR, entails a causal influence of gamma oscillations on the SMR. This finding supports the fundamental role attributed to gamma oscillations for information processing within the brain, and is of particular importance for brain–computer interfaces (BCIs). As modulation of the SMR is typically used in BCIs to infer a subject's intention, our findings entail that gamma oscillations have a causal influence on a subject's capability to utilize a BCI for means of communication.
External Publication Status:published
Document Type:Article
Communicated by:Heide Klooz
Affiliations:MPI für Intelligente Systeme/Abt. Schölkopf
Identifiers:URL:http://www.kyb.tuebingen.mpg.de/
LOCALID:6506
DOI:10.1016/j.neuroimage.2010.04.265
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.