Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Plasmaphysik     Collection: Conference Papers     Display Documents

ID: 60015.0, MPI für Plasmaphysik / Conference Papers
Micro-stability and transport modeling of internal transport barriers on JET
Authors:Garbet, X.; Baranov, Y.; Bateman, G.; Benkadda, S.; Beyer, P.; Budny, R.; Crisanti, F.; Esposito, B.; Figarella, C.; Fourment, C.; Ghendrih, P.; Imbeaux, F.; Joffrin, E.; Kinsey, J.; Kritz, A.; Litaudon, X.; Maget, P.; Mantica, P.; Moreau, D.; Sarazin, Y.; Pankin, A.; Parail, V.; Peeters, A.; Tala, T.; Tardini, G.; Thyagaraja, A.; Voitsekhovitch, I.; Weiland, J.; Wolf, R.
Publisher:International Atomic Energy Agency
Place of Publication:Vienna
Date of Publication (YYYY-MM-DD):2003
Title of Proceedings:Fusion Energy 2002
Sequence Number:TH/2-1
Physical Description:CD-ROM
Name of Conference/Meeting:19th Fusion Energy Conference
Place of Conference/Meeting:Lyon (FR)
(Start) Date of Conference/Meeting
End Date of Conference/Meeting 
Review Status:Internal review
Audience:Experts Only
Abstract / Description:Internal Transport Barriers (ITB's) in tokamak plasmas are a promising way to achieve steady-state plasmas with good confinement properties in a fusion reactor. Despite a large activity in this field, the formation and self-sustainment of barriers are still not well understood. The physics of ITB's in JET has been investigated with various techniques, namely micro-stability analysis, profile modelling and turbulence simulations. The calculation of linear growth rates show that the magnetic shear plays an important role in the formation of the ITB. The Shafranov shift, ratio of the ion to electron temperature, and impurity content further improve the stability. However the ExB velocity shear is important for the sustainment and the motion of the barrier. This picture is consistent with profile modelling and global fluid simulations of electrostatic drift waves. Turbulence simulations also show that the formation mechanisms are different for electron and ion barriers. Ion barriers are mainly due to the formation of a gap in the density of low wavenumber resonant surfaces whereas electron barriers are rather due to a reversal of the precession drift of trapped electrons.
External Publication Status:published
Document Type:Conference-Paper
Communicated by:N. N.
Affiliations:MPI für Plasmaphysik/Tokamak Theory (TOK)
External Affiliations:Association Euratom-CEA, Cadarache, France; EURATOM/UKAEA, Culham Science Centre, Abingdon, United Kingdom; Lehigh University Physics Department, Bethlehem, PA, USA; LPIIM, Centre Universitaire de Saint-Jerôme,Marseille, France; PPPL, Princeton University, Princeton, NJ, USA; Assoziatione EURATOM-ENEA sulla Fusione, Frascati, Italy; Istituto di Fisica del Plasma CNR-EURATOM, Milano, Italy; Chalmers University of Technology and Euratom-VR Assocation, Göteborg, Sweden; Association EURATOM-TEKES, VTT CTIP, Finland; Institut für Plasmaphysik, Association EURATOM, FZJ, Jülich, Germany
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.