Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 607411.0, MPI für Astronomie / Publikationen_mpia
The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? III. Sedimentation driven coagulation inside the snowline
Authors:Zsom, A.; Ormel, C. W.; Dullemond, C. P.; Henning, T.
Date of Publication (YYYY-MM-DD):2011
Journal Abbrev.:Astronomy and Astrophysics
Volume:534
Audience:Not Specified
Abstract / Description:Context. The evolution of dust particles in protoplanetary disks determines many observable and structural properties of the disk, such as the spectral energy distribution (SED), appearance of disks, temperature profile, and chemistry. Dust coagulation is also the first step towards planet formation. <BR /> Aims: We investigate dust growth due to settling in a 1D vertical column of a disk. It is known from the ten micron feature in disk SEDs, that small micron-sized grains are present at the disk atmosphere throughout the lifetime of the disk. We hope to explain such questions as what process can keep the disk atmospheres dusty for the lifetime of the disk and how the particle properties change as a function of height above the midplane. <BR /> Methods: We used a Monte Carlo code to follow the mass and porosity evolution of the particles in time. We gradually build up the complexity of the models by considering the effects of porosity, different collision models, turbulence, and different gas models, respectively. This way we can distinguish the effects of these physical processes on particle growth and motion. The collision model used is based on laboratory experiments performed on dust aggregates. As the experiments cannot cover all possible collision scenarios, the largest uncertainty of our model comes from the necessary extrapolations we had to perform. We simultaneously solved for the particle growth and motion. Particles can move vertically due to settling and turbulent mixing. We assumed that the vertical profile of the gas density is fixed in time and that only the solid component evolves. <BR /> Results: We find that the used collision model strongly influences the masses and sizes of the particles. The laboratory-experiment based collision model greatly reduces the particle sizes compared to models that assume sticking at all collision velocities. We find that a turbulence parameter of α = 10-2 is needed to keep the dust atmospheres dusty, but such strong turbulence can produce only small particles at the midplane, which does not favor for planetesimal formation models. We also see that the particles are larger at the midplane and smaller at the upper layers of the disk. At 3-4 pressure-scale heights, micron-sized particles are produced. These particle sizes are needed to explain the ten micron feature of disk SEDs. Turbulence may therefore help keep small dust particles in the disk atmosphere.
Free Keywords:methods: numerical; planets and satellites: formation; protoplanetary disks
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://cdsads.u-strasbg.fr/abs/2011A%26A...534A..7...
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.