Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2012-arch     Display Documents



  history
ID: 645215.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2012-arch
YPR139c/LOA1 encodes a novel lysophosphatidic acid acyltransferase associated with lipid droplets and involved in TAG homeostasis.
Authors:Ayciriex, Sophie; Guédard, Marina Le; Camougrand, Nadine; Velours, Gisèle; Schoene, Mario; Leone, Sebastien; Wattelet-Boyer, Valerie; Dupuy, Jean-William; Shevchenko, Andrej; Schmitter, Jean-Marie; Lessire, René; Bessoule, Jean-Jacques; Testet, Eric
Date of Publication (YYYY-MM-DD):2012
Title of Journal:Molecular Biology of the Cell
Volume:23
Issue / Number:2
Start Page:233
End Page:246
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:For many years, lipid droplets (LDs) were considered to be an inert store of lipids. However, recent data showed that LDs are dynamic organelles playing an important role in storage and mobilization of neutral lipids. In this paper, we report the characterization of LOA1 (alias VPS66, alias YPR139c), a yeast member of the glycerolipid acyltransferase family. LOA1 mutants show abnormalities in LD morphology. As previously reported, cells lacking LOA1 contain more LDs. Conversely, we showed that overexpression results in fewer LDs. We then compared the lipidome of loa1Δ mutant and wild-type strains. Steady-state metabolic labeling of loa1Δ revealed a significant reduction in triacylglycerol content, while phospholipid (PL) composition remained unchanged. Interestingly, lipidomic analysis indicates that both PLs and glycerolipids are qualitatively affected by the mutation, suggesting that Loa1p is a lysophosphatidic acid acyltransferase (LPA AT) with a preference for oleoyl-CoA. This hypothesis was tested by in vitro assays using both membranes of Escherichia coli cells expressing LOA1 and purified proteins as enzyme sources. Our results from purification of subcellular compartments and proteomic studies show that Loa1p is associated with LD and active in this compartment. Loa1p is therefore a novel LPA AT and plays a role in LD formation.
External Publication Status:published
Document Type:Article
Version Comment:Automatic journal name synchronization
Communicated by:nn
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:4695
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.