Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2012-arch     Display Documents



  history
ID: 645264.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2012-arch
First exon length controls active chromatin signatures and transcription.
Authors:Bieberstein, Nicole; Carrillo Oesterreich, Fernando; Straube, Korinna; Neugebauer, Karla M.
Date of Publication (YYYY-MM-DD):2012
Title of Journal:Cell Reports
Volume:2
Issue / Number:1
Start Page:62
End Page:68
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs) to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs) and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.
External Publication Status:published
Document Type:Article
Version Comment:Automatic journal name synchronization
Communicated by:nn
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:4962
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.