Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



  history
ID: 661020.0, MPI für Astronomie / Publikationen_mpia
3D numerical calculations and synthetic observations of magnetized massive dense core collapse and fragmentation
Authors:Commercon, B.; Hennebelle, P.; Levrier, F.; Launhardt, R.; Henning, Th.
Date of Publication (YYYY-MM-DD):2012-01
Title of Proceedings:From Atoms to Pebbles: Herschel's view of Star and Planet Formation
Start Page:id.8
Name of Conference/Meeting:From Atoms to Pebbles: Herschel's view of Star and Planet Formation
Review Status:not specified
Audience:Not Specified
Abstract / Description:I will present radiation-magneto-hydrodynamics calculations of low-mass and massive dense core collapse, focusing on the first collapse and the first hydrostatic core (first Larson core) formation. The influence of magnetic field and initial mass on the fragmentation properties will be investigated. In the first part reporting low mass dense core collapse calculations, synthetic observations of spectral energy distributions will be derived, as well as classical observational quantities such as bolometric temperature and luminosity. I will show how the dust continuum can help to target first hydrostatic cores and to state about the nature of VeLLOs. Last, I will present synthetic ALMA observation predictions of first hydrostatic cores which may give an answer, if not definitive, to the fragmentation issue at the early Class 0 stage. In the second part, I will report the results of radiation-magneto-hydrodynamics calculations in the context of high mass star formation, using for the first time a self-consistent model for photon emission (i.e. via thermal emission and in radiative shocks) and with the high resolution necessary to resolve properly magnetic braking effects and radiative shocks on scales <100 AU (Commercon, Hennebelle & Henning ApJL 2011). In this study, we investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores (M=100 M_&sun;). We identify a new mechanism that inhibits initial fragmentation of massive dense cores, where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation, while moderately magnetized massive dense cores are more appropriate to form OB associations or small star clusters. Finally we will also present synthetic observations of these collapsing massive dense cores.
Comment of the Author/Creator:Date: 2012 online, March 1, 2012
External Publication Status:published
Document Type:Conference-Paper
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:URL:http://cdsads.u-strasbg.fr/abs/2012faph.confE...8C [ID No:1]
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.