Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 661046.0, MPI für Astronomie / Publikationen_mpia
Thin disc, thick disc and halo in a simulated galaxy
Authors:Brook, C. B.; Stinson, G. S.; Gibson, B. K.; Kawata, D.; House, E. L.; Miranda, M. S.; Macciò, A. V.; Pilkington, K.; Roškar, R.; Wadsley, J.; Quinn, T. R.
Date of Publication (YYYY-MM-DD):2012
Journal Abbrev.:Monthly Notices of the Royal Astronomical Society
Issue / Number:1
Start Page:690
End Page:700
Audience:Not Specified
Abstract / Description:Within a cosmological hydrodynamical simulation, we form a disc galaxy with sub-components which can be assigned to a thin stellar disc, thick disc and a low-mass stellar halo via a chemical decomposition. The thin- and thick-disc populations so selected are distinct in their ages, kinematics and metallicities. Thin-disc stars are young (<6.6 Gyr), possess low velocity dispersion (σU, V, W = 41, 31, 25 km s-1), high [Fe/H] and low [O/Fe]. Conversely, the thick-disc stars are old (6.6 < age < 9.8 Gyr), lag the thin disc by ˜21 km s-1, possess higher velocity dispersion (σU, V, W = 49, 44, 35 km s-1) and have relatively low [Fe/H] and high [O/Fe]. The halo component comprises less than 4 per cent of stars in the 'solar annulus' of the simulation, has low metallicity, a velocity ellipsoid defined by σU, V, W = 62, 46, 45 km s-1 and is formed primarily in situ during an early merger epoch. Gas-rich mergers during this epoch play a major role in fuelling the formation of the old-disc stars (the thick disc). We demonstrate that this is consistent with studies which show that cold accretion is the main source of a disc galaxy's baryons. Our simulation initially forms a relatively short (scalelength ˜1.7 kpc at z = 1) and kinematically hot disc, primarily from gas accreted during the galaxy's merger epoch. Far from being a competing formation scenario, we show that migration is crucial for reconciling the short, hot, discs which form at high redshift in Λ cold dark matter, with the properties of the thick disc at z = 0. The thick disc, as defined by its abundances, maintains its relatively short scalelength at z = 0 (2.31 kpc) compared with the total disc scalelength of 2.73 kpc. The inside-out nature of disc growth is imprinted in the evolution of abundances such that the metal-poor α-young population has a larger scalelength (4.07 kpc) than the more chemically evolved metal-rich α-young population (2.74 kpc).
Free Keywords:Galaxy: disc; Galaxy: evolution; Galaxy: formation; galaxies: evolution; galaxies: formation
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.