Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 661074.0, MPI für Astronomie / Publikationen_mpia
Age spread in W3 main: Large Binocular Telescope/LUCI near-infrared spectroscopy of the massive stellar content
Authors:Bik, A.; Henning, T.; Stolte, A.; Brandner, W.; Gouliermis, D. A.; Gennaro, M.; Pasquali, A.; Rochau, B.; Beuther, H.; Ageorges, N.; Seifert, W.; Wang, Y.; Kudryavtseva, N.
Date of Publication (YYYY-MM-DD):2012
Journal Abbrev.:The Astrophysical Journal
Issue / Number:2
Start Page:id. 87
Audience:Not Specified
Abstract / Description:We present near-infrared multi-object spectroscopy and JHK s imaging of the massive stellar content of the Galactic star-forming region W3 Main, obtained with LUCI at the Large Binocular Telescope. We confirm 15 OB stars in W3 Main and derive spectral types between O5V and B4V from their absorption line spectra. Three massive young stellar objects are identified by their emission line spectra and near-infrared excess. The color-color diagram of the detected sources allows a detailed investigation of the slope of the near-infrared extinction law toward W3 Main. Analysis of the Hertzsprung-Russell diagram suggests that the Nishiyama extinction law fits the stellar population of W3 Main best (E(J - H)/E(H - K s) = 1.76 and R_{{K_s}} = 1.44). From our spectrophotometric analysis of the massive stars and the nature of their surrounding H II regions, we derive the evolutionary sequence of W3 Main and we find evidence of an age spread of at least 2-3 Myr. While the most massive star (IRS2) is already evolved, indications for high-mass pre-main-sequence evolution are found for another star (IRS N1), deeply embedded in an ultracompact H II (UCH II) region, in line with the different evolutionary phases observed in the corresponding H II regions. We derive a stellar mass of W3 Main of (4 ± 1) × 103 M &sun; by extrapolating from the number of OB stars using a Kroupa initial mass function and correcting for our spectroscopic incompleteness. We have detected the photospheres of OB stars from the more evolved diffuse H II region to the much younger UCH II regions, suggesting that these stars have finished their formation and cleared away their circumstellar disks very fast. Only in the hyper-compact H II region (IRS5) do the early-type stars seem to be still surrounded by circumstellar material. Based on data acquired using the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in Germany, Italy, and the United States. LBT Corporation partners are LBT Beteiligungsgesellschaft, Germany, representing the Max Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; Istituto Nazionale di Astrofisica, Italy; The University of Arizona on behalf of the Arizona university system; The Ohio State University, and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota, and University of Virginia.
Free Keywords:H II regions; infrared: stars; stars: formation; stars: massive; techniques: spectroscopic
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.