Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Chemische Physik fester Stoffe     Collection: publications 2013     Display Documents



  history
ID: 671347.0, MPI für Chemische Physik fester Stoffe / publications 2013
Strong Quadrupole-Strain Interaction of Vacancy Orbital in Boron-Doped Czochralski Silicon
Authors:Okabe, K.; Akatsu, M.; Baba, S.; Mitsumoto, K.; Nemoto, Y.; Yamada-Kaneta, H.; Goto, T.; Saito, H.; Kashima, K.; Saito, Y.
Language:English
Date of Publication (YYYY-MM-DD):2013-12-24
Title of Journal:Journal of the Physical Society of Japan
Volume:82
Issue / Number:12
Start Page:124604-1
End Page:124604-8
Sequence Number of Article:124604
Review Status:not specified
Audience:Not Specified
Abstract / Description:We have carried out ultrasonic measurements of a boron-doped silicon ingot grown by the Czochralski method in order to determine the quadrupole-strain interaction constant of a vacancy orbital. The low-temperature softening of the elastic constant C-44 shows a remarkable variation depending on positions of the ingot, which reflects the distribution of vacancy concentration N in the ingot. An infrared laser scattering tomograph was employed to measure the density and size of voids in the silicon wafers by determining the vacancy concentration N-cons consumed in void formation. Using a combination of laser scattering tomography and low-temperature softening, we have found a sum rule in which the initially created vacancy concentration N-total corresponds to the sum of the residual vacancy concentration N and the consumed vacancy concentration N-cons as N-total N + N-cons. Taking account of the sum rule, we deduce the interaction constant g(Gamma 5) = (2.8 +/- 0.2) x 10(5) K for the quadrupole-strain interaction H-QS = -g(Gamma 5)O(zx)epsilon(zx) of the vacancy orbital. The huge deformation energy of 1.6 x 10(5) K per vacancy with the Gamma(8) ground state for unit strain epsilon(zx) = 1 verified the strong electron-lattice interaction of the vacancy orbital. Employing the one-to-one correspondence between the softening of Delta C-44/C-44 = 1.0 x 10(-4) down to 30 mK and the vacancy concentration of N = 1.5 x 10(13) cm(-3), we can determine the vacancy concentration by low-temperature ultrasonic measurements. The present work surely puts forward a novel semiconductor technology based on low-temperature ultrasonic measurements for evaluating vacancy concentration in silicon wafers.
External Publication Status:published
Document Type:Article
Communicated by:Ina Werner
Affiliations:MPI für chemische Physik fester Stoffe
Identifiers:ISI:000327350700025 [ID No:1]
ISSN:0031-9015 [ID No:2]
DOI:10.7566/JPSJ.82.124604
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.