Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2013 (arch)     Display Documents



  history
ID: 688486.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2013 (arch)
A Recent Evolutionary Change Affects a Regulatory Element in the Human FOXP2 Gene.
Authors:Maricic, Tomislav; Günther, Viola; Georgiev, Oleg; Gehre, Sabine; Curlin, Marija; Schreiweis, Christiane; Naumann, Ronald; Burbano, Hernán A; Meyer, Matthias; Lalueza-Fox, Carles; Rasilla, Marco de la; Rosas, Antonio; Gajovic, Srecko; Kelso, Janet; Enard, Wolfgang; Schaffner, Walter; Pääbo, Svante
Date of Publication (YYYY-MM-DD):2013
Title of Journal:Molecular Biology and Evolution
Volume:30
Issue / Number:4
Start Page:844
End Page:852
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:The FOXP2 gene is required for normal development of speech and language. By isolating and sequencing FOXP2 genomic DNA fragments from a 49,000-year-old Iberian Neandertal and 50 present-day humans, we have identified substitutions in the gene shared by all or nearly all present-day humans but absent or polymorphic in Neandertals. One such substitution is localized in intron 8 and affects a binding site for the transcription factor POU3F2, which is highly conserved among vertebrates. We find that the derived allele of this site is less efficient than the ancestral allele in activating transcription from a reporter construct. The derived allele also binds less POU3F2 dimers than POU3F2 monomers compared with the ancestral allele. Because the substitution in the POU3F2 binding site is likely to alter the regulation of FOXP2 expression, and because it is localized in a region of the gene associated with a previously described signal of positive selection, it is a plausible candidate for having caused a recent selective sweep in the FOXP2 gene.
External Publication Status:published
Document Type:Article
Version Comment:Automatic journal name synchronization
Communicated by:Lib
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:5261
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.