Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2013 (arch)     Display Documents



  history
ID: 688526.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2013 (arch)
The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal
Authors:Kelava, Iva; Lewitus, Eric; Huttner, Wieland B.
Date of Publication (YYYY-MM-DD):2013
Title of Journal:Frontiers in Neuroanatomy
Volume:7
Sequence Number of Article:16
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:Gyrencephaly (the folding of the surface of the neocortex) is a mammalian-specific trait present in almost all mammalian orders. Despite the widespread appearance of the trait, little is known about the mechanism of its genesis or its adaptive significance. Still, most of the hypotheses proposed concentrated on the pattern of connectivity of mature neurons as main components of gyri formation. Recent work on embryonic neurogenesis in several species of mammals revealed different progenitor and stem cells and their neurogenic potential as having important roles in the process of gyrification. Studies in the field of comparative neurogenesis revealed that gyrencephaly is an evolutionarily labile trait, and that some species underwent a secondary loss of a convoluted brain surface and thus reverted to a more ancient form, a less folded brain surface (lissencephaly). This phenotypic reversion provides an excellent system for understanding the phenomenon of secondary loss. In this review, we will outline the theory behind secondary loss and, as specific examples, present species that have undergone this transition with respect to neocortical folding. We will also discuss different possible pathways for obtaining (or losing) gyri. Finally, we will explore the potential adaptive consequence of gyrencephaly relative to lissencephaly and vice versa.
External Publication Status:published
Document Type:Article
Version Comment:Automatic journal name synchronization
Communicated by:Lib
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:5505
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.