Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 693446.0, MPI für Astronomie / Publikationen_mpia
Extinction and polycyclic aromatic hydrocarbon intensity variations across the H II Region IRAS 12063-6259
Authors:Stock, D. J.; Peeters, E.; Tielens, A. G. G. M.; Otaguro, J. N.; Bik, A.
Date of Publication (YYYY-MM-DD):2013
Title of Journal:The Astrophysical Journal
Volume:771
Issue / Number:1
Start Page:id. 72 (15 pp)
Audience:Not Specified
Abstract / Description:The spatial variations in polycyclic aromatic hydrocarbon (PAH) band intensities are normally attributed to the physical conditions of the emitting PAHs, however in recent years it has been suggested that such variations are caused mainly by extinction. To resolve this question, we have obtained near-infrared (NIR), mid-infrared (MIR), and radio observations of the compact H II region IRAS 12063-6259. We use these data to construct multiple independent extinction maps and also to measure the main PAH features (6.2, 7.7, 8.6, and 11.2 μm) in the MIR. Three extinction maps are derived: the first using the NIR hydrogen lines and case B recombination theory; the second combining the NIR data with radio data; and the third making use of the Spitzer/IRS MIR observations to measure the 9.8 μm silicate absorption feature using the Spoon method and PAHFIT (as the depth of this feature can be related to overall extinction). The silicate absorption over the bright, southern component of IRAS 12063-6259 is almost absent while the other methods find significant extinction. While such breakdowns of the relationship between the NIR extinction and the 9.8 μm absorption have been observed in molecular clouds, they have never been observed for H II regions. We then compare the PAH intensity variations in the Spitzer/IRS data after dereddening to those found in the original data. It was found that in most cases, the PAH band intensity variations persist even after dereddening, implying that extinction is not the main cause of the PAH band intensity variations.
Free Keywords:dust; extinction; galaxies: ISM; H II regions; infrared: ISM; ISM: lines and bands; ISM: molecules
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-637X
URL:http://cdsads.u-strasbg.fr/abs/2013ApJ...771...72S
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.