Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 693607.0, MPI für Astronomie / Publikationen_mpia
Platform deformation phase correction for the AMiBA-13 coplanar interferometer
Authors:Liao, Y.-W.; Lin, K.-Y.; Huang, Y.-D.; Proty Wu, J.-H.; Ho, P. T. P.; Chen, M.-T.; Locutus Huang, C.-W.; Koch, P. M.; Nishioka, H.; Cheng, T.-A.; Fu, S.-Y.; Liu, G.-C.; Molnar, S. M.; Umetsu, K.; Wang, F.-C.; Chang, Y.-Y.; Han, C.-C.; Li, C.-T.; Martin-Cocher, P.; Oshiro, P.
Date of Publication (YYYY-MM-DD):2013
Title of Journal:The Astrophysical Journal
Issue / Number:1
Start Page:id. 71 (12 pp)
Audience:Not Specified
Abstract / Description:We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.
Free Keywords:instrumentation: interferometers
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.