Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2014 (arch)     Display Documents



  history
ID: 705645.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2014 (arch)
Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo.
Authors:Breckwoldt, Michael O; Pfister, Franz M J; Bradley, Peter M; Marinković, Petar; Williams, Philip R; Brill, Monika S; Plomer, Barbara; Schmalz, Anja; Clair, Daret K St; Naumann, Ronald; Griesbeck, Oliver; Schwarzländer, Markus; Godinho, Leanne; Bareyre, Florence M; Dick, Tobias P; Kerschensteiner, Martin; Misgeld, Thomas
Date of Publication (YYYY-MM-DD):2014
Title of Journal:Nature Medicine
Start Page:555
End Page:560
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:Mitochondrial redox signals have a central role in neuronal physiology and disease. Here we describe a new optical approach to measure fast redox signals with single-organelle resolution in living mice that express genetically encoded redox biosensors in their neuronal mitochondria. Moreover, we demonstrate how parallel measurements with several biosensors can integrate these redox signals into a comprehensive characterization of mitochondrial function. This approach revealed that axonal mitochondria undergo spontaneous 'contractions' that are accompanied by reversible redox changes. These contractions are amplified by neuronal activity and acute or chronic neuronal insults. Multiparametric imaging reveals that contractions constitute respiratory chain-dependent episodes of depolarization coinciding with matrix alkalinization, followed by uncoupling. In contrast, permanent mitochondrial damage after spinal cord injury depends on calcium influx and mitochondrial permeability transition. Thus, our approach allows us to identify heterogeneity among physiological and pathological redox signals, correlate such signals to functional and structural organelle dynamics and dissect the underlying mechanisms.
External Publication Status:published
Document Type:Article
Version Comment:Automatic journal name synchronization
Communicated by:thuem
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:5738
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.