Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2014 (arch)     Display Documents



  history
ID: 705708.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2014 (arch)
An Adaptive Threshold in Mammalian Neocortical Evolution.
Authors:Lewitus, Eric; Kelava, Iva; Kalinka, Alex T.; Tomancak, Pavel; Huttner, Wieland B.
Date of Publication (YYYY-MM-DD):2014
Title of Journal:PLoS Biology
Volume:12
Issue / Number:11
Sequence Number of Article:e1002000
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:Expansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We find that variation in GI does not evolve linearly across species, but that mammals constitute two principal groups above and below a GI threshold value of 1.5, approximately equal to 109 neurons, which may be characterized by distinct constellations of physiological and life-history traits. By integrating data on neurogenic period, neuroepithelial founder pool size, cell-cycle length, progenitor-type abundances, and cortical neuron number into discrete mathematical models, we identify symmetric proliferative divisions of basal progenitors in the subventricular zone of the developing neocortex as evolutionarily necessary for generating a 14-fold increase in daily prenatal neuron production, traversal of the GI threshold, and thus establishment of two principal groups. We conclude that, despite considerable neuroanatomical differences, changes in the length of the neurogenic period alone, rather than any novel neurogenic progenitor lineage, are sufficient to explain differences in neuron number and neocortical size between species within the same principal group.
External Publication Status:published
Document Type:Article
Version Comment:Automatic journal name synchronization
Communicated by:thuem
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:5896
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.