Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2014 (arch)     Display Documents



  history
ID: 705713.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2014 (arch)
The Role of Phospholipid Headgroup Composition and Trehalose in the Desiccation Tolerance of Caenorhabditis elegans.
Authors:Abusharkh, Sawsan E; Erkut, Cihan; Oertel, Jana; Kurzchalia, Teymuras V.; Fahmy, Karim
Date of Publication (YYYY-MM-DD):2014
Title of Journal:Langmuir : the ACS Journal of Surfaces and Colloids
Volume:30
Issue / Number:43
Start Page:12897
End Page:12906
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:Anhydrobiotic organisms have the remarkable ability to lose extensive amounts of body water and survive in an ametabolic state. Distributed to various taxa of life, these organisms have developed strategies to efficiently protect their cell membranes and proteins against extreme water loss. Recently, we showed that the dauer larva of the nematode Caenorhabditis elegans is anhydrobiotic and accumulates high amounts of trehalose during preparation to harsh desiccation (preconditioning). Here, we have used this genetic model to study the biophysical manifestations of anhydrobiosis and show that, in addition to trehalose accumulation, dauer larvae dramatically reduce their phosphatidylcholine (PC) content. The chemical composition of the phospholipids (PLs) has key consequences not only for their interaction with trehalose, as we demonstrate with Langmuir-Blodgett monolayers, but also, the kinetic response of PLs to hydration transients is strongly influenced as evidenced by time-resolved FTIR spectroscopy. PLs from preconditioned larvae with reduced PC content exhibit a higher trehalose affinity, a stronger hydration-induced gain in acyl chain free volume, and a wider spread of structural relaxation rates of their lyotropic transitions and sub-headgroup H-bond interactions. The different hydration properties of PC and phosphatidylethanolamine (PE) headgroups are crucial for the hydration-dependent rearrangement of the trehalose-mediated H-bond network. As a consequence, the compressibility modulus of PLs from preconditioned larvae is about 2.6-fold smaller than that from non-preconditioned ones. Thus, the biological relevance of reducing the PC:PE ratio by PL headgroup adaptation should be the preservation of plasma membrane integrity by relieving mechanical strain from desiccated trehalose-containing cells during fast rehydration.
External Publication Status:published
Document Type:Article
Version Comment:Automatic journal name synchronization
Communicated by:thuem
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:5908
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.