Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2015 (arch)     Display Documents



ID: 717992.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2015 (arch)
The C. elegans dauer larva as a paradigm to study metabolic suppression and desiccation tolerance.
Authors:Erkut, Cihan; Kurzchalia, Teymuras V.
Date of Publication (YYYY-MM-DD):2015
Title of Journal:Planta
Volume:242
Issue / Number:2
Start Page:389
End Page:396
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:The hypometabolic, stress-resistant dauer larva of Caenorhabditis elegans serves as an excellent model to study the molecular mechanisms of desiccation tolerance, such as maintenance of membrane organization, protein folding, xenobiotic and ROS detoxification in the dry state. Many organisms from diverse taxa of life have the remarkable ability to survive extreme desiccation in the nature by entering an ametabolic state known as anhydrobiosis (life without water). The hallmark of the anhydrobiotic state is the achievement and maintenance of an exceedingly low metabolic rate, as well as preservation of the structural integrity of the cell. Although described more than three centuries ago, the biochemical and biophysical mechanisms underlying this phenomenon are still not fully comprehended. This is mainly due to the fact that anhydrobiosis in animals was studied using non-model organisms, which are very difficult, if not impossible, to manipulate at the molecular level. Recently, we introduced the roundworm (nematode) Caenorhabditis elegans as a model for anhydrobiosis. Taking advantage of powerful genetic, biochemical and biophysical tools, we investigated several aspects of anhydrobiosis in a particular developmental stage (the dauer larva) of this organism. First, our studies allowed confirming the previously suggested role of the disaccharide trehalose in the preservation of lipid membranes. Moreover, in addition to known pathways such as reactive oxygen species defense, heat-shock and intrinsically disordered protein expression, evidence for some novel strategies of anhydrobiosis has been obtained. These are increased glyoxalase activity, polyamine and polyunsaturated fatty acid biosynthesis. All these pathways may constitute a generic toolbox of anhydrobiosis, which is possibly conserved between animals and plants.
External Publication Status:published
Document Type:Article
Communicated by:Thüm
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:6263
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.