Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 720021.0, MPI für Astronomie / Publikationen_mpia
The evolution of the cold interstellar medium in galaxies following a starburst
Authors:Rowlands, K.; Wild, V.; Nesvadba, N.; Sibthorpe, B.; Mortier, A.; Lehnert, M.; da Cunha, E.
Date of Publication (YYYY-MM-DD):2015
Title of Journal:Monthly Notices of the Royal Astronomical Society
Volume:448
Issue / Number:1
Start Page:258
End Page:279
Audience:Not Specified
Abstract / Description:We present the evolution of dust and molecular gas properties in a sample of 11 z ˜ 0.03 starburst to post-starburst (PSB) galaxies selected to span an age sequence from ongoing starburst to 1 Gyr after the starburst ended. All PSBs harbour significant molecular gas and dust reservoirs and residual star formation, indicating that complete quenching of the starburst due to exhaustion or expulsion of gas has not occurred during this timespan. As the starburst ages, we observe a clear decrease in the star formation efficiency, molecular gas and star formation rate (SFR) surface density, and effective dust temperature, from levels coincident with starburst galaxies to those of normal star-forming galaxies. These trends are consistent with a natural decrease in the SFR following consumption of molecular gas by the starburst, and corresponding decrease in the interstellar radiation field strength as the starburst ages. The gas and dust contents of the PSBs are coincident with those of star-forming galaxies and molecular gas-rich early-type galaxies, and are not consistent with galaxies on the red sequence. We find no evidence that the global gas reservoir is expelled by stellar winds or active galactic nuclei feedback. Our results show that although a strong starburst in a low-redshift galaxy may cause the galaxy to ultimately have a lower specific SFR and be of an earlier morphological type, the galaxy will remain in the `green valley' for an extended time. Multiple such episodes may be needed to complete migration of the galaxy from the blue- to red sequence.
Free Keywords:dust; extinction; galaxies: evolution; galaxies: interactions; galaxies: ISM; galaxies: starburst; submillimetre: galaxies
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0035-8711
URL:http://cdsads.u-strasbg.fr/abs/2015MNRAS.448..258R
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.