Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 720098.0, MPI für Astronomie / Publikationen_mpia
The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps
Authors:Menu, J.; van Boekel, R.; Henning, T.; Leinert, C.; Waelkens, C.; Waters, L. B. F. M.
Date of Publication (YYYY-MM-DD):2015
Title of Journal:Astronomy and Astrophysics
Start Page:id. A107 (25 pp)
Audience:Not Specified
Abstract / Description:Context. The disks around Herbig Ae/Be stars are commonly divided into group I and group II based on their far-infrared spectral energy distribution, and the common interpretation for that is flared and flat disks. Our understanding of the evolution of these disks is rapidly changing. Recent observations suggest that many flaring disks have gaps, whereas flat disks are thought to be gapless. <BR /> Aims: The different groups of objects can be expected to have different structural signatures in high-angular-resolution data, related to gaps, dust settling, and flaring. We aim to use such data to gain new insight into disk structure and evolution. <BR /> Methods: Over the past 10 years, the MIDI instrument on the Very Large Telescope Interferometer has collected observations of several tens of protoplanetary disks. We modeled the large set of observations with simple geometric models and compared the characteristic sizes among the different objects. A population of radiative-transfer models was synthesized for interpreting the mid-infrared signatures. <BR /> Results: Objects with similar luminosities show very different disk sizes in the mid-infrared. This may point to an intrinsic diversity or could also hint at different evolutionary stages of the disks. Restricting this to the young objects of intermediate mass, we confirm that most group I disks are in agreement with being transitional (i.e., they have gaps). We find that several group II objects have mid-infrared sizes and colors that overlap with sources classified as group I, transition disks. This suggests that these sources have gaps, which has been demonstrated for a subset of them. This may point to an intermediate population between gapless and transition disks. <BR /> Conclusions: Flat disks with gaps are most likely descendants of flat disks without gaps. Potentially related to the formation of massive bodies, gaps may therefore even develop in disks in a far stage of grain growth and settling. The evolutionary implications of this new population could be twofold. Either gapped flat disks form a separate population of evolved disks or some of them may evolve further into flaring disks with large gaps. The latter transformation may be governed by the interaction with a massive planet, carving a large gap and dynamically exciting the grain population in the disk. Appendices A and B are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201525654/olm">http://www.aanda.org</A>
Free Keywords:protoplanetary disks; techniques: interferometric; planet-disk interactions; stars: pre-main sequence
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-6361 %R 10.1051/0004-6361/201525654
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.