Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 720253.0, MPI für Astronomie / Publikationen_mpia
Resolving the chemical substructure of Orion-KL
Authors:Feng, S.; Beuther, H.; Henning, T.; Semenov, D.; Palau, A.; Mills, E. A. C.
Date of Publication (YYYY-MM-DD):2015
Title of Journal:Astronomy and Astrophysics
Start Page:id. A71 (50 pp)
Audience:Not Specified
Abstract / Description:Context. The Kleinmann-Low nebula in Orion (Orion-KL) is the nearest example of a high-mass star-forming environment. Studying the resolved chemical substructures of this complex region provides important insight into the chemistry of high-mass star-forming regions (HMSFRs), as it relates to their evolutionary states. <BR /> Aims: The goal of this work is to resolve the molecular line emission from individual substructures of Orion-KL at high spectral and spatial resolution and to infer the chemical properties of the associated gas. <BR /> Methods: We present a line survey of Orion-KL obtained from combined Submillimeter Array (SMA) interferometric and IRAM 30 m single-dish observations. Covering a 4 GHz bandwidth in total, this survey contains over 160 emission lines from 20 species (25 isotopologues), including 11 complex organic molecules (COMs). Spectra are extracted from individual substructures and the intensity-integrated distribution map for each species is provided. We then estimate the rotation temperature for each substructure, along with their molecular column densities and abundances. <BR /> Results: For the first time, we complement 1.3 mm interferometric data with single-dish observations of the Orion-KL region and study small-scale chemical variations in this region. (1) We resolve continuum substructures on ~3'' angular scale. (2) We identify lines from the low-abundance COMs CH3COCH3 and CH3CH2OH, as well as tentatively detect CH3CHO and long carbon-chain molecules C6H and HC7N. (3) We find that while most COMs are segregated by type, peaking either towards the hotcore (e.g., nitrogen-bearing species) or the compact ridge (e.g., oxygen-bearing species like HCOOCH3 and CH3OCH3), the distributions of others do not follow this segregated structure (e.g., CH3CH2OH, CH3OH, CH3COCH3). (4) We find a second velocity component of HNCO, SO2, 34SO2, and SO lines, which may be associated with a strong shock event in the low-velocity outflow. (5) Temperatures and molecular abundances show large gradients between central condensations and the outflow regions, illustrating a transition between hot molecular core and shock-chemistry dominated regimes. <BR /> Conclusions: Our observations of spatially resolved abundance variations in Orion-KL provide the nearest reference source for hot molecular core and outflow chemistry, which will be an important example for interpreting the chemistry of more distant HMSFRs. Appendices are available in electronic form at <A href="http://www.aanda.org/10.1051/0004-6361/201322725/olm">http://www.aanda.org</A>Merged maps (data cubes) are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> ( or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A71">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A71</A>
Free Keywords:stars: formation; ISM: abundances; stars: massive; ISM: lines and bands; ISM: molecules; submillimeter: ISM
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.