Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 731573.0, MPI für Astronomie / Publikationen_mpia
The VIRUS-P Exploration of Nearby Galaxies (VENGA): spatially resolved gas-phase metallicity distributions in barred and unbarred spirals
Authors:Kaplan, K. F.; Jogee, S.; Kewley, L.; Blanc, G. A.; Weinzirl, T.; Song, M.; Drory, N.; Luo, R.; van den Bosch, R. C. E.
Date of Publication (YYYY-MM-DD):2016
Title of Journal:Monthly Notices of the Royal Astronomical Society
Volume:462
Issue / Number:2
Start Page:1642
End Page:1682
Audience:Not Specified
Abstract / Description:We present a study of the excitation conditions and metallicity of ionized gas (Zgas) in eight nearby barred and unbarred spiral galaxies from the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey, which provides high spatial sampling and resolution (median ˜387 pc), large coverage from the bulge to outer disc, broad wavelength range (3600-6800 Å), and medium spectral resolution (˜120 km s-1 at 5000 Å). Our results are: (1) We present high resolution gas excitation maps to differentiate between regions with excitation typical of Seyfert, LINER, or recent star formation. We find LINER-type excitation at large distances (3-10 kpc) from the centre, and associate this excitation with diffuse ionized gas (DIG). (2) After excluding spaxels dominated by Seyfert, LINER, or DIG, we produce maps with the best spatial resolution and sampling to date of the ionization parameter q, star formation rate, and Zgas using common strong line diagnostics. We find that isolated barred and unbarred spirals exhibit similarly shallow Zgas profiles from the inner kpc out to large radii (7-10 kpc or 0.5-1.0 R25). This implies that if profiles had steeper gradients at earlier epochs, then the present-day bar is not the primary driver flattening gradients over time. This result contradicts earlier claims, but agrees with recent IFU studies. (3) The Zgas gradients in our z ˜ 0 massive spirals are markedly shallower, by ˜0.2 dex kpc-1, than published gradients for lensed lower mass galaxies at z ˜ 1.5-2.0. Cosmologically motivated hydrodynamical simulations best match this inferred evolution, but the match is sensitive to adopted stellar feedback prescriptions.
Free Keywords:galaxies: abundances; galaxies: ISM; galaxies: spiral
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0035-8711 %R 10.1093/mnras/stw1422
URL:http://cdsads.u-strasbg.fr/abs/2016MNRAS.462.1642K
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.