Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 731602.0, MPI für Astronomie / Publikationen_mpia
The ionized gas in nearby galaxies as traced by the [N II] 122 and 205 μm transitions
Authors:Herrera-Camus, R.; Bolatto, A.; Smith, J. D.; Draine, B.; Pellegrini, E.; Wolfire, M.; Croxall, K.; de Looze, I.; Calzetti, D.; Kennicutt, R.; Crocker, A.; Armus, L.; van der Werf, P.; Sandstrom, K.; Galametz, M.; Brandl, B.; Groves, B.; Rigopoulou, D.; Walter, F.; Leroy, A.; Boquien, M.; Tabatabaei, F. S.; Beirao, P.
Date of Publication (YYYY-MM-DD):2016
Title of Journal:The Astrophysical Journal
Issue / Number:2
Start Page:id. 175 (17 pp)
Audience:Not Specified
Abstract / Description:The [N ii] 122 and 205 μm transitions are powerful tracers of the ionized gas in the interstellar medium. By combining data from 21 galaxies selected from the Herschel KINGFISH and Beyond the Peak surveys, we have compiled 141 spatially resolved regions with a typical size of ∼1 kpc, with observations of both [N ii] far-infrared lines. We measure [N ii] 122/205 line ratios in the ∼0.6–6 range, which corresponds to electron gas densities of n e ∼ 1–300 cm‑3, with a median value of n e = 30 cm‑3. Variations in the electron density within individual galaxies can be as high as a factor of ∼50, frequently with strong radial gradients. We find that n e increases as a function of infrared color, dust-weighted mean starlight intensity, and star-formation rate (SFR) surface density (ΣSFR). As the intensity of the [N ii] transitions is related to the ionizing photon flux, we investigate their reliability as tracers of the SFR. We derive relations between the [N ii] emission and SFR in the low-density limit and in the case of a log-normal distribution of densities. The scatter in the correlation between [N ii] surface brightness and ΣSFR can be understood as a property of the n e distribution. For regions with n e close to or higher than the [N ii] line critical densities, the low-density limit [N ii]-based SFR calibration systematically underestimates the SFR because the [N ii] emission is collisionally quenched. Finally, we investigate the relation between [N ii] emission, SFR, and n e by comparing our observations to predictions from the MAPPINGS-III code.
Free Keywords:galaxies: ISM; galaxies: star formation; ISM: structure
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-637X %R 10.3847/0004-637X/826/2/175
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.