Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 731625.0, MPI für Astronomie / Publikationen_mpia
Diagnostics of the unstable envelopes of Wolf-Rayet stars
Authors:Grassitelli, L.; Chené, A. -. N.; Sanyal, D.; Langer, N.; St-Louis, N.; Bestenlehner, J. M.; Fossati, L.
Date of Publication (YYYY-MM-DD):2016
Title of Journal:Astronomy and Astrophysics
Start Page:id. A12 (14 pp)
Audience:Not Specified
Abstract / Description:Context. The envelopes of stars near the Eddington limit are prone to various instabilities. A high Eddington factor in connection with the iron opacity peak leads to convective instability, and a corresponding envelope inflation may induce pulsational instability. Here, we investigate the occurrence and consequences of both instabilities in models of Wolf-Rayet stars. <BR /> Aims: We determine the convective velocities in the sub-surface convective zones to estimate the amplitude of the turbulent velocity at the base of the wind that potentially leads to the formation of small-scale wind structures, as observed in several Wolf-Rayet stars. We also investigate the effect of stellar wind mass loss on the pulsations of our stellar models. <BR /> Methods: We approximated solar metallicity Wolf-Rayet stars in the range 2-17 M by models of mass-losing helium stars, computed with the Bonn stellar evolution code. We characterized the properties of convection in the envelope of these stars adopting the standard mixing length theory. <BR /> Results: Our results show the occurrence of sub-surface convective regions in all studied models. Small (≈1 km s-1) surface velocity amplitudes are predicted for models with masses below ≈10 M. For models with M ≳ 10 M, the surface velocity amplitudes are of the order of 10 km s-1. Moreover we find the occurrence of pulsations for stars in the mass range 9-14 M, while mass loss appears to stabilize the more massive Wolf-Rayet stars. We confront our results with observationally derived line variabilities of 17 WN stars, of which we analysed eight here for the first time. The data suggest variability to occur for stars above 10 M, which is increasing linearly with mass above this value, in agreement with our results. We further find our models in the mass range 9-14M to be unstable to radial pulsations, and predict local magnetic fields of the order of hundreds of gauss in Wolf-Rayet stars more massive than ≈10 M. <BR /> Conclusions: Our study relates the surface velocity fluctuations induced by sub-surface convection to the formation of clumping in the inner part of the wind. From this mechanism, we expect a stronger variability in more massive Wolf-Rayet stars, and a weaker variability in corresponding low metallicity Wolf-Rayet stars.
Free Keywords:convection; instabilities; turbulence; stars: Wolf-Rayet; stars: oscillations; stars: winds; outflows
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-6361 %R 10.1051/0004-6361/201527873
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.