Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 731761.0, MPI für Astronomie / Publikationen_mpia
The void galaxy survey: Star formation properties
Authors:Beygu, B.; Kreckel, K.; van der Hulst, J. M.; Jarrett, T. H.; Peletier, R.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.
Date of Publication (YYYY-MM-DD):2016
Title of Journal:Monthly Notices of the Royal Astronomical Society
Volume:458
Issue / Number:1
Start Page:394
End Page:409
Audience:Not Specified
Abstract / Description:We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from H α and recent star formation rates from near-UV imaging. In addition, infrared 3.4, 4.6, 12 and 22 μm Wide-field Infrared Survey Explorer emission is used as star formation and mass indicator. Infrared and optical colours show that the VGS sample displays a wide range of dust and metallicity properties. We combine these measurements with stellar and H I masses to measure the specific SFRs (SFR/M*) and star formation efficiencies ({SFR/{M }_H I}). We compare the star formation properties of our sample with galaxies in the more moderate density regions of the cosmic web, `the field'. We find that specific SFRs of the VGS galaxies as a function of stellar and H I mass are similar to those of the galaxies in these field regions. Their SFR α is slightly elevated than the galaxies in the field for a given total H I mass. In the global star formation picture presented by Kennicutt-Schmidt, VGS galaxies fall into the regime of low average star formation and correspondingly low H I surface density. Their mean {SFR α /{M}_{H I} and SFR α/M* are of the order of 10- 9.9 yr- 1. We conclude that while the large-scale underdense environment must play some role in galaxy formation and growth through accretion, we find that even with respect to other galaxies in the more mildly underdense regions, the increase in star formation rate is only marginal.
Free Keywords:galaxies: formation; galaxies: star formation; galaxies: structure; large-scale structure of Universe
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0035-8711 %R 10.1093/mnras/stw280
URL:http://cdsads.u-strasbg.fr/abs/2016MNRAS.458..394B
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.