Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 731778.0, MPI für Astronomie / Publikationen_mpia
Prestellar core modeling in the presence of a filament. The dense heart of L1689B
Authors:Steinacker, J.; Bacmann, A.; Henning, T.; Heigl, S.
Date of Publication (YYYY-MM-DD):2016
Title of Journal:Astronomy and Astrophysics
Volume:593
Start Page:id.A6 (12 pp)
Audience:Not Specified
Abstract / Description:Context. Lacking a paradigm for the onset of star formation, it is important to derive basic physical properties of prestellar cores and filaments like density and temperature structures. <BR /> Aims: We aim to disentangle the spatial variation in density and temperature across the prestellar core L1689B, which is embedded in a filament. We want to determine the range of possible central densities and temperatures that are consistent with the continuum radiation data. <BR /> Methods: We apply a new synergetic radiative transfer method: the derived 1D density profiles are both consistent with a cut through the Herschel PACS/SPIRE and JCMT SCUBA-2 continuum maps of L1689B and with a derived local interstellar radiation field. Choosing an appropriate cut along the filament major axis, we minimize the impact of the filament emission on the modeling. <BR /> Results: For the bulk of the core (5000-20 000 au) an isothermal sphere model with a temperature of around 10 K provides the best fits. We show that the power law index of the density profile, as well as the constant temperature can be derived directly from the radial surface brightness profiles. For the inner region (<5000 au), we find a range of densities and temperatures that are consistent with the surface brightness profiles and the local interstellar radiation field. Based on our core models, we find that pixel-by-pixel single temperature spectral energy distribution fits are incapable of determining dense core properties. <BR /> Conclusions: We conclude that, to derive physical core properties, it is important to avoid azimuthally-averaging core and filament. Correspondingly, derived core masses are too high since they include some mass of the filament, and might introduce errors when determining core mass functions. The forward radiative transfer methods also avoids the loss of information owing to smearing of all maps to the coarsest spatial resolution. We find the central core region to be colder and denser than estimated in recent inverse radiative transfer modeling, possibly indicating the start of star formation in L1689B.
Free Keywords:stars: formation; radiative transfer; submillimeter: ISM; ISM: clouds
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-6361 %R 10.1051/0004-6361/201628815
URL:http://adsabs.harvard.edu/abs/2016A%26A...593A...6...
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.