Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 731846.0, MPI für Astronomie / Publikationen_mpia
Mid-J CO shock tracing observations of infrared dark clouds. II. Low-J CO constraints on excitation, depletion, and kinematics
Authors:Pon, A.; Johnstone, D.; Caselli, P.; Fontani, F.; Palau, A.; Butler, M. J.; Kaufman, M.; Jiménez-Serra, I.; Tan, J. C.
Date of Publication (YYYY-MM-DD):2016
Title of Journal:Astronomy and Astrophysics
Start Page:id. A96 ( 23 pp)
Audience:Not Specified
Abstract / Description:Infrared dark clouds are kinematically complex molecular structures in the interstellar medium that can host sites of massive star formation. We present maps measuring 4 square arcminutes of the 12CO, 13CO, and C18O J = 3 to 2 lines from selected locations within the C and F (G028.37+00.07 and G034.43+00.24) infrared dark clouds (IRDCs), as well as single pointing observations of the 13CO and C18O J = 2 to 1 lines towards three cores within these clouds. We derive CO gas temperatures throughout the maps and find that CO is significantly frozen out within these IRDCs. We find that the CO depletion tends to be the highest near column density peaks with maximum depletion factors between 5 and 9 in IRDC F and between 16 and 31 in IRDC C. We also detect multiple velocity components and complex kinematic structure in both IRDCs. Therefore, the kinematics of IRDCs seem to point to dynamically evolving structures yielding dense cores with considerable depletion factors. Based on observations carried out with the JCMT and IRAM 30 m Telescopes. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).IRAM CO observations are only available at the CDS via anonymous ftp to <A href=""></A> ( or via <A href=""></A>
Free Keywords:ISM: clouds; stars: formation; ISM: molecules; ISM: kinematics and dynamics; ISM: structure; ISM: abundances
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-6361 %R 10.1051/0004-6361/201527154
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.