Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Session History
Support Wiki
Direct access to
document ID:

          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents

ID: 731971.0, MPI für Astronomie / Publikationen_mpia
The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for [CII] line and dust emission in 6
Authors:Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.
Date of Publication (YYYY-MM-DD):2016
Title of Journal:The Astrophysical Journal
Start Page:id. 71 (22 pp)
Audience:Not Specified
Abstract / Description:We present a search for [C ii] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212–272 GHz, encompass approximately the range of 6 < z < 8 for [C ii] line emission and reach a limiting luminosity of L [C ii] ∼ (1.6–2.5) × 108 L . We identify 14 [C ii] line emitting candidates in this redshift range with significances >4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C ii] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C ii] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M yr‑1. We find that the two highest-SFR objects have candidate [C ii] lines with luminosities that are consistent with the low-redshift L [C ii] versus SFR relation. The other candidates have significantly higher [C ii] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C ii] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C ii] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.
Free Keywords:galaxies: evolution; galaxies: high-redshift; galaxies: ISM; galaxies: star formation; instrumentation: interferometers; submillimeter: galaxies
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-637X %R 10.3847/1538-4357/833/1/71
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.