Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2016 (archival)     Display Documents



ID: 732397.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2016 (archival)
Hedgehog Signaling Strength Is Orchestrated by the mir-310 Cluster of MicroRNAs in Response to Diet.
Authors:Çiçek, Ibrahim Ömer; Karaca, Samir; Brankatschk, Marko; Eaton, Suzanne; Urlaub, Henning; Shcherbata, Halyna R
Date of Publication (YYYY-MM-DD):2016
Title of Journal:Genetics
Volume:202
Issue / Number:3
Start Page:1167
End Page:1183
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:Since the discovery of microRNAs (miRNAs) only two decades ago, they have emerged as an essential component of the gene regulatory machinery. miRNAs have seemingly paradoxical features: a single miRNA is able to simultaneously target hundreds of genes, while its presence is mostly dispensable for animal viability under normal conditions. It is known that miRNAs act as stress response factors; however, it remains challenging to determine their relevant targets and the conditions under which they function. To address this challenge, we propose a new workflow for miRNA function analysis, by which we found that the evolutionarily young miRNA family, the mir-310s (mir-310/mir-311/mir-312/mir-313), are important regulators of Drosophila metabolic status. mir-310s-deficient animals have an abnormal diet-dependent expression profile for numerous diet-sensitive components, accumulate fats, and show various physiological defects. We found that the mir-310s simultaneously repress the production of several regulatory factors (Rab23, DHR96, and Ttk) of the evolutionarily conserved Hedgehog (Hh) pathway to sharpen dietary response. As the mir-310s expression is highly dynamic and nutrition sensitive, this signal relay model helps to explain the molecular mechanism governing quick and robust Hh signaling responses to nutritional changes. Additionally, we discovered a new component of the Hh signaling pathway in Drosophila, Rab23, which cell autonomously regulates Hh ligand trafficking in the germline stem cell niche. How organisms adjust to dietary fluctuations to sustain healthy homeostasis is an intriguing research topic. These data are the first to report that miRNAs can act as executives that transduce nutritional signals to an essential signaling pathway. This suggests miRNAs as plausible therapeutic agents that can be used in combination with low calorie and cholesterol diets to manage quick and precise tissue-specific responses to nutritional changes.
External Publication Status:published
Document Type:Article
Communicated by:Thüm
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:6445
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.