Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für molekulare Zellbiologie und Genetik     Collection: MPI-CBG Publications 2016 (archival)     Display Documents



ID: 732459.0, MPI für molekulare Zellbiologie und Genetik / MPI-CBG Publications 2016 (archival)
An endosomal tether undergoes an entropic collapse to bring vesicles together.
Authors:Murray, David; Jahnel, Marcus; Lauer, Janelle; Avellaneda, Mario; Brouilly, Nicolas; Cezanne, Alice; Morales-Navarrete, Hernán; Perini, Enrico; Ferguson, Charles; Lupas, Andrei N; Kalaidzidis, Yannis; Parton, Robert G.; Grill, Stephan W.; Zerial, Marino
Date of Publication (YYYY-MM-DD):2016
Title of Journal:Nature
Volume:537
Issue / Number:7618
Start Page:107
End Page:111
Copyright:not available
Audience:Experts Only
Intended Educational Use:No
Abstract / Description:An early step in intracellular transport is the selective recognition of a vesicle by its appropriate target membrane, a process regulated by Rab GTPases via the recruitment of tethering effectors. Membrane tethering confers higher selectivity and efficiency to membrane fusion than the pairing of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) alone. Here we address the mechanism whereby a tethered vesicle comes closer towards its target membrane for fusion by reconstituting an endosomal asymmetric tethering machinery consisting of the dimeric coiled-coil protein EEA1 (refs 6, 7) recruited to phosphatidylinositol 3-phosphate membranes and binding vesicles harbouring Rab5. Surprisingly, structural analysis reveals that Rab5:GTP induces an allosteric conformational change in EEA1, from extended to flexible and collapsed. Through dynamic analysis by optical tweezers, we confirm that EEA1 captures a vesicle at a distance corresponding to its extended conformation, and directly measure its flexibility and the forces induced during the tethering reaction. Expression of engineered EEA1 variants defective in the conformational change induce prominent clusters of tethered vesicles in vivo. Our results suggest a new mechanism in which Rab5 induces a change in flexibility of EEA1, generating an entropic collapse force that pulls the captured vesicle towards the target membrane to initiate docking and fusion.
External Publication Status:published
Document Type:Article
Communicated by:Thüm
Affiliations:MPI für molekulare Zellbiologie und Genetik
Identifiers:LOCALID:6624
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.