Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 742571.0, MPI für Astronomie / Publikationen_mpia
Orbital alignment and star-spot properties in the WASP-52 planetary system
Authors:Mancini, L.; Southworth, J.; Raia, G.; Tregloan-Reed, J.; Mollière, P.; Bozza, V.; Bretton, M.; Bruni, I.; Ciceri, S.; D'Ago, G.; Dominik, M.; Hinse, T. C.; Hundertmark, M.; Jørgensen, U. G.; Korhonen, H.; Rabus, M.; Rahvar, S.; Starkey, D.; Calchi Novati, S.; Figuera Jaimes, R.; Henning, T.; Juncher, D.; Haugbølle, T.; Kains, N.; Popovas, A.; Schmidt, R. W.; Skottfelt, J.; Snodgrass, C.; Surdej, J.; Wertz, O.
Date of Publication (YYYY-MM-DD):2017
Title of Journal:Monthly Notices of the Royal Astronomical Society
Volume:465
Start Page:843
End Page:857
Audience:Not Specified
Abstract / Description:We report 13 high-precision light curves of eight transits of the exoplanet WASP-52b, obtained by using four medium-class telescopes, through different filters, and adopting the defocussing technique. One transit was recorded simultaneously from two different observatories and another one from the same site but with two different instruments, including a multi-band camera. Anomalies were clearly detected in five light curves and modelled as starspots occulted by the planet during the transit events. We fitted the clean light curves with the jktebop code, and those with the anomalies with the prism+gemc codes in order to simultaneously model the photometric parameters of the transits and the position, size and contrast of each starspot. We used these new light curves and some from the literature to revise the physical properties of the WASP-52 system. Starspots with similar characteristics were detected in four transits over a period of 43 days. In the hypothesis that we are dealing with the same starspot, periodically occulted by the transiting planet, we estimated the projected orbital obliquity of WASP-52b to be lambda = 3.8 \pm 8.4 degree. We also determined the true orbital obliquity, psi = 20 \pm 50 degree, which is, although very uncertain, the first measurement of psi purely from starspot crossings. We finally assembled an optical transmission spectrum of the planet and searched for variations of its radius as a function of wavelength. Our analysis suggests a flat transmission spectrum within the experimental uncertainties.
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0035-8711
URL:http://adsabs.harvard.edu/abs/2017MNRAS.465..843M
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.