Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 742630.0, MPI für Astronomie / Publikationen_mpia
The thermal proximity effect: A new probe of the He II reionization history and quasar lifetime
Authors:Khrykin, I. S.; Hennawi, J. F.; McQuinn, M.
Date of Publication (YYYY-MM-DD):2017
Title of Journal:The Astrophysical Journal
Volume:838
Issue / Number:2
Start Page:id. 96 (22 pp)
Audience:Not Specified
Abstract / Description:Despite decades of effort, the timing and duration of He ii reionization and the properties of the quasars believed to drive it are still not well constrained. We present a new method to study both via the thermal proximity effect—the heating of the intergalactic medium (IGM) around quasars when their radiation doubly ionizes helium. We post-process hydrodynamical simulations with 1D radiative transfer and study how the thermal proximity effect depends on the He ii fraction, {x}{He{{II}},0}, which prevailed in the IGM before the quasar turned on, and the quasar lifetime {t}{{Q}}. We find that the amplitude of the temperature boost in the quasar environment depends on {x}{He{{II}},0}, with a characteristic value of {{Δ }}T≃ {10}4 {{K}} for {x}{He{{II}},0}=1.0, whereas the size of the thermal proximity zone is sensitive to {t}{{Q}}, with typical sizes of ≃ 100 {cMpc} for {t}{{Q}}={10}8 {yr}. This temperature boost increases the thermal broadening of H i absorption lines near the quasar. We introduce a new Bayesian statistical method based on measuring the Lyα forest power spectrum as a function of distance from the quasar, and demonstrate that the thermal proximity effect should be easily detectable. For a mock data set of 50 quasars at z≃ 4, we predict that one can measure {x}{He{{II}},0} to an (absolute) precision ≈ 0.04 and {t}{{Q}} to a precision of ≈ 0.1 dex. By applying our formalism to existing high-resolution Lyα forest spectra, one should be able to reconstruct the He ii reionization history, providing a global census of hard photons in the high-z universe.
Free Keywords:cosmology: theory; dark ages; reionization; first stars; intergalactic medium; quasars: general
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-637X %R 10.3847/1538-4357/aa6621
URL:http://adsabs.harvard.edu/abs/2017ApJ...838...96K
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.