Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 742670.0, MPI für Astronomie / Publikationen_mpia
Masses and ages for 230,000 LAMOST giants, via their carbon and nitrogen abundances
Authors:Ho, A. Y. Q.; Rix, H.-W.; Ness, M. K.; Hogg, D. W.; Liu, C.; Ting, Y.-S.
Date of Publication (YYYY-MM-DD):2017
Title of Journal:The Astrophysical Journal
Volume:841
Issue / Number:1
Start Page:id. 40 (12 pp)
Audience:Not Specified
Abstract / Description:We measure carbon and nitrogen abundances to a precision of ≲ 0.1 dex for 450,000 giant stars from their low-resolution (R∼ 1800) LAMOST DR2 survey spectra. We use these [{{C}}/{{M}}] and [{{N}}/{{M}}] measurements, together with empirical relations based on the APOKASC sample, to infer stellar masses and implied ages for 230,000 of these objects to 0.08 dex and 0.2 dex respectively. We use The Cannon, a data-driven approach to spectral modeling, to construct a predictive model for LAMOST spectra. Our reference set comprises 8125 stars observed in common between the APOGEE and LAMOST surveys, taking seven APOGEE DR12 labels (parameters) as ground truth: {T}{eff}, {log} g, [{{M}}/{{H}}], [α /{{M}}], [{{C}}/{{M}}], [{{N}}/{{M}}], and {A}{{k}}. We add seven colors to the Cannon model, based on the g, r, i, J, H, K, W1, W2 magnitudes from APASS, 2MASS, and WISE, which improves our constraints on {T}{eff} and {log} g by up to 20% and on {A}{{k}} by up to 70%. Cross-validation of the model demonstrates that, for high-{{S}}/{{N}} objects, our inferred labels agree with the APOGEE values to within 50 K in temperature, 0.04 mag in {A}{{k}}, and < 0.1 dex in {log} g, [{{M}}/{{H}}], [{{C}}/{{M}}], [{{N}}/{{M}}], and [α /{{M}}]. We apply the model to 450,000 giants in LAMOST DR2 that have not been observed by APOGEE. This demonstrates that precise individual abundances can be measured from low-resolution spectra and represents the largest catalog to date of homogeneous stellar [{{C}}/{{M}}], [{{N}}/{{M}}], masses, and ages. As a result, we greatly increase the number and sky coverage of stars with mass and age estimates.
Free Keywords:methods: data analysis; methods: statistical; stars: abundances; stars: fundamental parameters; surveys; techniques: spectroscopic
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-637X
URL:http://adsabs.harvard.edu/abs/2017ApJ...841...40H
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.