Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 742822.0, MPI für Astronomie / Publikationen_mpia
An upper limit on the mass of a central black hole in the Large Magellanic Cloud from the stellar rotation field
Authors:Boyce, H.; Lützgendorf, N.; van der Marel, R. P.; Baumgardt, H.; Kissler-Patig, M.; Neumayer, N.; de Zeeuw, P. T.
Date of Publication (YYYY-MM-DD):2017
Title of Journal:The Astrophysical Journal
Volume:846
Issue / Number:1
Start Page:id. 14 (10 pp)
Audience:Not Specified
Abstract / Description:We constrain the possible presence of a central black hole (BH) in the center of the Large Magellanic Cloud. This requires spectroscopic measurements over an area of the order of a square degree, due to the poorly known position of the kinematic center. Such measurements are now possible with the impressive field of view of the Multi Unit Spectroscopic Explorer (MUSE) on the ESO Very Large Telescope. We used the Calcium Triplet (∼850 nm) spectral lines in many short-exposure MUSE pointings to create a two-dimensional integrated-light line-of-sight velocity map from the ∼ {10}8 individual spectra, taking care to identify and remove Galactic foreground populations. The data reveal a clear velocity gradient at an unprecedented spatial resolution of 1 arcmin2. We fit kinematic models to arrive at a 3σ upper-mass limit of {10}7.1 {M}ȯ for any central BH—consistent with the known scaling relations for supermassive black holes and their host systems. This adds to the growing body of knowledge on the presence of BHs in low-mass and dwarf galaxies, and their scaling relations with host-galaxy properties, which can shed light on theories of BH growth and host system interaction.
Free Keywords:black hole physics; galaxies: individual: Large Magellanic Cloud; galaxies: kinematics and dynamics
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-637X
URL:http://adsabs.harvard.edu/abs/2017ApJ...846...14B
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.