Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 742873.0, MPI für Astronomie / Publikationen_mpia
First millimeter detection of the disk around a young, isolated, planetary-mass object
Authors:Bayo, A.; Joergens, V.; Liu, Y.; Brauer, R.; Olofsson, J.; Arancibia, J.; Pinilla, P.; Wolf, S.; Ruge, J. P.; Henning, T.; Natta, A.; Johnston, K. G.; Bonnefoy, M.; Beuther, H.; Chauvin, G.
Date of Publication (YYYY-MM-DD):2017
Title of Journal:The Astrophysical Journal Letters
Volume:841
Issue / Number:1
Start Page:id. L11 (4 pp)
Audience:Not Specified
Abstract / Description:OTS44 is one of only four free-floating planets known to have a disk. We have previously shown that it is the coolest and least massive known free-floating planet (∼12 {M}{Jup}) with a substantial disk that is actively accreting. We have obtained Band 6 (233 GHz) ALMA continuum data of this very young disk-bearing object. The data show a clear unresolved detection of the source. We obtained disk-mass estimates via empirical correlations derived for young, higher-mass, central (substellar) objects. The range of values obtained are between 0.07 and 0.63 {M}\oplus (dust masses). We compare the properties of this unique disk with those recently reported around higher-mass (brown dwarfs) young objects in order to infer constraints on its mechanism of formation. While extreme assumptions on dust temperature yield disk-mass values that could slightly diverge from the general trends found for more massive brown dwarfs, a range of sensible values provide disk masses compatible with a unique scaling relation between {M}{dust} and M * through the substellar domain down to planetary masses.
Free Keywords:brown dwarfs; stars: formation; stars: low-mass; stars: pre-main sequence
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-637X
URL:http://adsabs.harvard.edu/abs/2017ApJ...841L..11B
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.