Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 742874.0, MPI für Astronomie / Publikationen_mpia
Physical parameters of late M-type members of Chamaeleon I and TW Hydrae Association: dust settling, age dispersion and activity
Authors:Bayo, A.; Barrado, D.; Allard, F.; Henning, T.; Comerón, F.; Morales-Calderón, M.; Rajpurohit, A. S.; Peña Ramírez, K.; Beamín, J. C.
Date of Publication (YYYY-MM-DD):2017
Title of Journal:Monthly Notices of the Royal Astronomical Society
Volume:465
Start Page:760
End Page:783
Audience:Not Specified
Abstract / Description:Although mid-to-late type M dwarfs are the most common stars in our stellar neighborhood, our knowledge of these objects is still limited. Open questions include the evolution of their angular momentum, internal structures, dust settling in their atmospheres, age dispersion within populations. In addition, at young ages, late-type Ms have masses below the hydrogen burning limit and therefore are key objects in the debate on the brown dwarf mechanism of formation. In this work we determine and study in detail the physical parameters of two samples of young, late M-type sources belonging to either the Chamaeleon I Dark Cloud or the TW Hydrae Association and compare them with the results obtained in the literature for other young clusters and also for older, field, dwarfs. We used multi-wavelength photometry to construct and analyze SEDs to determine general properties of the photosphere and disk presence. We also used low resolution optical and near-infrared spectroscopy to study activity, accretion, gravity and effective temperature sensitive indicators. We propose a VO-based spectral index that is both temperature and age sensitive. We derived physical parameters using independent techniques confirming the already common feature/problem of the age/luminosity spread. In particular, we highlight two brown dwarfs showing very similar temperatures but clearly different surface gravity (explained invoking extreme early accretion). We also show how, despite large improvement in the dust treatment in theoretical models, there is still room for further progress in the simultaneous reproduction of the optical and near-infrared features of these cold young objects.
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0035-8711
URL:http://adsabs.harvard.edu/abs/2017MNRAS.465..760B
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.