Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Session History
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Institute: MPI für Astronomie     Collection: Publikationen_mpia     Display Documents



ID: 742880.0, MPI für Astronomie / Publikationen_mpia
Inelastic e+Mg collision data and its impact on modelling stellar and supernova spectra
Authors:Barklem, P. S.; Osorio, Y.; Fursa, D. V.; Bray, I.; Zatsarinny, O.; Bartschat, K.; Jerkstrand, A.
Date of Publication (YYYY-MM-DD):2017
Title of Journal:Astronomy and Astrophysics
Volume:606
Start Page:id. A11 (7 pp)
Audience:Not Specified
Abstract / Description:Results of calculations for inelastic e+Mg effective collision strengths for the lowest 25 physical states of Mg I (up to 3s6p1P), and thus 300 transitions, from the convergent close-coupling (CCC) and the B-spline R-matrix (BSR) methods are presented. At temperatures of interest, 5000 K, the results of the two calculations differ on average by only 4%, with a scatter of 27%. As the methods are independent, this suggests that the calculations provide datasets for e+Mg collisions accurate to this level. Comparison with the commonly used dataset compiled by Mauas et al. (1988, ApJ, 330, 1008), covering 25 transitions among 12 states, suggests the Mauas et al. data are on average 57% too low, and with a very large scatter of a factor of 6.5. In particular the collision strength for the transition corresponding to the Mg I intercombination line at 457 nm is significantly underestimated by Mauas et al., which has consequences for models that employ this dataset. In giant stars the new data leads to a stronger line compared to previous non-LTE calculations, and thus a reduction in the non-LTE abundance correction by 0.1 dex ( 25%). A non-LTE calculation in a supernova ejecta model shows this line becomes significantly stronger, by a factor of around two, alleviating the discrepancy where the 457 nm line in typical models with Mg/O ratios close to solar tended to be too weak compared to observations. Full Tables 2 and 3 are only available at the CDS via anonymous ftp to <A href="http://cdsarc.u-strasbg.fr">http://cdsarc.u-strasbg.fr</A> (<A href="http://130.79.128.5">http://130.79.128.5</A>) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A11">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A11</A>
Free Keywords:atomic data; atomic processes
External Publication Status:published
Document Type:Article
Communicated by:N. N.
Affiliations:MPI für Astronomie
Identifiers:ISSN:0004-6361
URL:http://adsabs.harvard.edu/abs/2017A%26A...606A..11...
The scope and number of records on eDoc is subject to the collection policies defined by each institute - see "info" button in the collection browse view.