Pudlik, T., H. Hennig, D. Witthaut and D. Campbell: Tunneling in the self-trapped regime of a two-well Bose-Einstein condensate. In: Physical Review A 90, Seq. No.: 053610 (2014).
doi: 10.1103/PhysRevA.90.053610
Pudlik, T., H. Hennig, D. Witthaut and D. K. Campbell: Dynamics of entanglement in a dissipative Bose-Hubbard dimer. In: Physical Review A 88, Seq. No.: 063606 (2013).
doi: 10.1103/PhysRevA.88.063606
url: http://journals.aps.org/pra/abstract/10.1103/PhysRevA.88.063606
Hennig, H. and R. Fleischmann: Nature of self-localization of Bose-Einstein condensates in optical lattices. In: Physical Review A 87, 3, Seq. No.: 033605 (2013).
doi: 10.1103/PhysRevA.87.033605
Hennig, H., D. Witthaut and D. K. Campbell: Global phase space of coherence and entanglement in a double-well Bose-Einstein condensate. In: Physical Review A 86, 5, Seq. No.: 051604 (2012).
url: http://link.aps.org/doi/10.1103/PhysRevA.86.051604
doi: 10.1103/PhysRevA.86.051604
Hennig, H., R. Fleischmann and T. Geisel: Immer haarscharf daneben. In: Spektrum der Wissenschaft 9, 16-20 (2012).
Hennig, H., R. Fleischmann and T. Geisel: Musical rhythms: The science of being slightly off. In: Physics Today 65, 64-65 (2012).
doi: 10.1063/PT.3.1650
Hennig, H., R. Ragnar Fleischmann, A. Fredebohm, Y. Hagmayer, J. Nagler, A. Witt, F. Theis and T. Geisel: The Nature and Perception of Fluctuations in Human Musical Rhythms. In: PLoS ONE 6, Seq. No.: e26457 (2011).
doi: 10.1371/journal.pone.0026457
Trimborn, F., D. Witthaut, H. Hennig, G. Kordas, T. Geisel and S. Wimberger: Decay of a Bose-Einstein condensate in a dissipative lattice - the mean-field approximation and beyond. In: The European Physical Journal D 63, 63-71 (2011).
doi: http://dx.doi.org/10.1140/epjd/e2011-10702-7
Witthaut, D., F. Trimborn, H. Hennig, G. Kordas, T. Geisel and S. Wimberger: Beyond mean-field dynamics in open Bose-Hubbard chains. In: Physical Review A 83, Seq. No.: 063608 (2011).
doi: http://dx.doi.org/10.1103/PhysRevA.83.063608
Hennig, H., J. Dorignac and D. K. Campbell: Transfer of Bose-Einstein condensates through discrete breathers in an optical lattice. In: Physical Review A 82, Seq. No.: 053604 (2010).
doi: 10.1103/PhysRevA.82.053604
http://edoc.mpg.de
The Max Planck Society does not take any responsibility for the content of this export.