Janzing, D., J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniusis, B. Steudel and B. Schölkopf: Information-geometric approach to inferring causal directions. In: Artificial Intelligence 182/183, 1-31 (2012).
doi: 10.1016/j.artint.2012.01.002
localid: training58467
Peters, J., D. Janzing and B. Schölkopf: Causal inference on discrete data using additive noise models. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 12, 2436-2450 (2011).
url: http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/2011/causal_discrete_4submitted_final.pdf
localid: PetersJS2011
doi: 10.1109/TPAMI.2011.71
Janzing, D., E. Sgouritsa, O. Stegle, J. Peters and B. Schölkopf: Detecting low-complexity unobserved causes. In: 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011) (2011) 383-391.
url: http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/2011/UAI-2011-Janzing.pdf
localid: JanzingSSPS2011
Peters, J., J. Mooij, D. Janzing and B. Schölkopf: Identifiability of causal graphs using functional models. In: 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011) (2011) 589-598.
url: http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/2011/UAI-2011-Peters.pdf
localid: PetersMJS2011
Zhang, K., J. Peters, D. Janzing and B. Schölkopf: Kernel-based Conditional Independence Test and Application in Causal Discovery. In: 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011) AUAI Press, Corvallis, OR (2011) 804-813.
url: http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/2011/UAI-2011-Zhang.pdf
localid: ZhangPJS2011
Zscheischler, J., D. Janzing and K. Zhang: Testing whether linear equations are causal: A free probability theory approach. In: 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011) AUAI Press, Corvallis, OR, USA (2011) 839-847.
url: http://www.kyb.tuebingen.mpg.de/fileadmin/user_upload/files/publications/2011/UAI-2011-Zscheischler.pdf
localid: ZscheischlerJZ2011
Mooij, J. M., O. Stegle, D. Janzing, K. Zhang and B. Schölkopf: Probabilistic latent variable models for distinguishing between cause and effect. In: 24th Annual Conference on Neural Information Processing Systems (NIPS 2010), (Eds.) l. Advances in neural information processing systems 23. Curran, Red Hook, NY (2011) 1687-1695.
url: http://www.kyb.tuebingen.mpg.de//fileadmin/user_upload/files/publications/NIPS2010-Mooij_6767[0].pdf
localid: 6767
Besserve, M., D. Janzing, N. K. Logothetis and B. Schölkopf: Finding dependencies between frequencies with the kernel cross-spectral density. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2011) (2011) 2080-2083.
url: http://www.kyb.tuebingen.mpg.de/
localid: 7047
doi: http://dx.doi.org/10.1016/j.irbm.2011.01.001
Allahverdyan, A. E., K. V. Hovhannisyan, D. Janzing and G. Mahler: Thermodynamic limits of dynamic cooling. In: Physical Review 84, Seq. No.: 041109 (2011).
doi: 10.1103/PhysRevE.84.041109
Janzing, D. and B. Schölkopf: Causal Inference Using the Algorithmic Markov Condition. In: IEEE Transactions on Information Theory 56, 10, 5168-5194 (2010).
localid: 6526
http://edoc.mpg.de
The Max Planck Society does not take any responsibility for the content of this export.