Kreiss, H.-O., O. Reula, O. Sarbach and J. Winicour: Boundary conditions for coupled quasilinear wave equations with application to isolated systems. In: Communications in Mathematical Physics 289, 3, 1099-1129 (2009).
doi: 10.1007/s00220-009-0788-2
localid: arXiv:0807.3207
Babiuc, M. C., N. T. Bishop, B. Szilagyi and J. Winicour: Strategies for the Characteristic Extraction of Gravitational Waveforms. In: Physical Review D 79, Seq. No.: 084011 (2009).
localid: arXiv:0808.0861
doi: 10.1103/PhysRevD.79.084011
Kreiss, H.-O., O. Reula, O. Sarbach and J. Winicour: Well-posed initial-boundary value problem for the harmonic Einstein equations using energy estimates. In: Classical and Quantum Gravity 24, 23, 5973-5984 (2007).
localid: arXiv:0707.4188
url: http://www.iop.org/EJ/abstract/0264-9381/24/23/017
Kreiss, H.-O. and J. Winicour: Problems which are well-posed in the generalized sense with applications to the Einstein equations. In: Classical and Quantum Gravity 23, S405-S420 (2006).
url: http://www.iop.org/EJ/abstract/0264-9381/23/16/S07
Barreto, W., A. Da Silva, R. Gomez, L. Lehner, L. Rosales and J. Winicour: The 3-dimensional Einstein-Klein-Gordon system in characteristic numerical relativity. In: Physical Review D 71, 6, Seq. No.: 064028 (2005).
url: http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRVDAQ000071000006064028000001&idtype=cvips&gifs=yes
Szilagyi, B., H.-O. Kreiss and J. Winicour: Modeling the Black Hole Excision Problem. In: Physical Review D 71, Seq. No.: 104035 (2005).
http://edoc.mpg.de
The Max Planck Society does not take any responsibility for the content of this export.