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The list of putative sources of gravitational waves possibly detected by the ongoing worldwide network
of large scale interferometers has been continuously growing in the last years. For some of them, the
detection is made difficult by the lack of a complete information about the expected signal. We
concentrate on the case where the expected gravitational wave (GW) is a quasiperiodic frequency
modulated signal i.e., a chirp. In this article, we address the question of detecting an a priori unknown
GW chirp. We introduce a general chirp model and claim that it includes all physically realistic GW
chirps. We produce a finite grid of template waveforms which samples the resulting set of possible chirps.
If we follow the classical approach (used for the detection of inspiralling binary chirps, for instance), we
would build a bank of quadrature matched filters comparing the data to each of the templates of this grid.
The detection would then be achieved by thresholding the output, the maximum giving the individual
which best fits the data. In the present case, this exhaustive search is not tractable because of the very large
number of templates in the grid. We show that the exhaustive search can be reformulated (using
approximations) as a pattern search in the time-frequency plane. This motivates an approximate but
feasible alternative solution which is clearly linked to the optimal one. The time-frequency representation
and pattern search algorithm are fully determined by the reformulation. This contrasts with the other time-
frequency based methods presented in the literature for the same problem, where these choices are
justified by ‘‘ad hoc’’ arguments. In particular, the time-frequency representation has to be unitary.
Finally, we assess the performance, robustness and computational cost of the proposed method with
several benchmarks using simulated data.
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I. INTRODUCTION

The worldwide network [1] of large scale interferomet-
ric gravitational wave (GW) detectors have started to take
data. The network includes the detectors GEO600, LIGO
and TAMA. It will be completed soon by the upcoming
Virgo. The overall sensitivity of these detectors is contin-
uously improving. Interesting upper limits for the ampli-
tude of GWs are being set and the first detection is
hopefully not too far.

A large variety of astrophysical sources are expected to
emit GWs in the observational frequency bandwidth of
these detectors. From the data analysis viewpoint, the
detection methodology for these sources depends on the
availability of a reliable and complete model of the GW.

Generally speaking, the oscillations of the GWs are
related to the orbital, rotational bulk motion of the con-
stituents of the emitting system. Since the system loses
energy by radiation, or because of some other physical
process involved, its orbital period, and consequently the
GW frequency can vary with time. In such case, the
emitted GW is a frequency modulated signal i.e., a chirp.
A detailed knowledge of the dynamics of the system is
required to describe precisely the characteristics of the GW
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chirps, in particular the phase evolution. This may not be
always possible as described in the following examples.

The GW emitted by a coalescing binary of compact
objects can be divided into three phases (inspiral, merger
and ringing). Although the GW can be obtained accurately
in the inspiral phase when the bodies are well separated [2]
(using post-Newtonian expansions) and in the ringing
phase after they have merged [3] (using perturbative meth-
ods), the in-between merger phase still defeats both the
numerical and analytical efforts [4] for modeling its highly
nonlinear regime. For large mass binaries, the merger
phase contributes to a dominant fraction of the signal-to-
noise ratio (SNR) [5]. In this case, the search method has to
accommodate the significant lack of signal information.

Kerr black holes accreting matter from a surrounding
magnetized torus are putative sources of the long gamma-
ray bursts (GRBs) [6]. It is claimed that, the black hole spin
energy is radiated away through GWs along with the GRB.
The precise shape of the emitted waveform would need
accurate hydrodynamical numerical simulations.

A third example is the GW emitted in the form of the
quasinormal modes [7] by a newly born hot neutron star
(during the cooling phase which follows the core collapse).
Here, the characteristics of the GW depend on the equation
of state of the proto-neutron star and various physical
processes (like neutrino diffusion, thermalization and cool-
ing) which are currently not known with accuracy.

All these three examples are expected to emit GW as an
unmodeled chirp, the phase information being not (per-
-1 © 2006 The American Physical Society
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fectly) known. Its typical duration in the detector band-
width is of the order of a few seconds.

While matched filtering is a well-known and efficient
detection technique when a precise waveform model is
available, the lack of waveform information prevents us
from using the same approach. It is thus natural to advocate
for exploratory searches (based on partial information or
‘‘good sense’’ models) as opposed to targeted ones (relying
on a precise model).

Various strategies [8–14] have been designed following
this viewpoint, for the detection of transients of short
duration (tenth to hundredth of milliseconds) or GW burst.
Such transients are typically from supernovae core collap-
ses. The notion of a varying frequency is not adequate for
such a small number of cycles. It is thus not meaningful to
describe such transients as chirps. Their detection is a
different issue than the one considered here.

Here, we are interested in exploratory search specifically
for unmodeled chirps. In the past, this question has already
been investigated yielding a detection method, the Signal
Track Search (STS) [13]. The STS relies on the observation
that, in a time-frequency (TF) representation, a chirp ap-
pears as a filiform pattern and this discriminatory signature
can be searched for. A satisfactory implementation of this
phenomenological argument calls for a proper TF repre-
sentation (TFR) and pattern search algorithm. The STS
results from ‘‘ad hoc’’ choices for the above mentioned
points.

In this paper, we propose a new method for the detection
of unmodeled chirps. It is based on the same general
principles (pattern search in a TFR) as the STS. Its origi-
nality resides in the clear link we establish between the
method (i.e., the choices of TFR and pattern search) and an
optimality criterion.

The paper is organized as follows. We state the detection
problem in Sec. II. We introduce the general chirp model
referred to as smooth chirp and we assume that most
physically realistic GW chirps can be described by this
model. The phase of a smooth chirp is an arbitrary con-
tinuous and differentiable function with bounded first and
second derivatives. In Sec. III, we derive the optimal
statistic for detecting a given smooth chirp in noise, which
is usually referred to as quadrature matched filtering. The
idea is then to apply this statistic for any smooth chirp, and
select the maximum which is associated to the individual
that best fits the data. This maximization has to be done
numerically. To do so, the set of smooth chirps being a
continuous set, has to be discretized. In Sec. IV, we show
that grids of templates can be constructed for smooth
chirps using chains of small chirps, we call chirplet chains
(CC). We further prove that the grid is tight i.e., any smooth
chirp can be closely approximated by a chirplet chain. The
maximization of the statistic over the set of smooth chirp
can be reliably replaced by a maximization over the set of
CCs. However, the number of CCs being very large, the
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computation of the quadrature matched filter for all CCs is
not tractable. In Sec. V, we propose a feasible (TF based)
procedure for finding the best CC. We show that the quad-
rature matched filter can be reformulated approximately as
a path integral computed in the TF representation given by
the discrete Wigner-Ville (WV) distribution. As a result,
the maximization of the statistic over the CCs amounts to
obtaining the TF path of largest integral. We demonstrate
that this kind of problem can be solved efficiently with
dynamic programming. We detail our path search algo-
rithm and we evaluate its computational cost. Finally, we
compare the resulting algorithm with other methods in
Sec. VI. Receiver operating characteristics obtained in
several realistic situations demonstrate the superiority of
the proposed approach.
II. SMOOTH CHIRPS IN GAUSSIAN NOISE

We introduce a general chirp model which we refer to as
smooth chirp,

s�t� � A cos���t� � ’0� for t0 � t � t0 � T; (1)

and s�t� � 0 outside this interval.
A smooth chirp is characterized by the amplitude A, the

initial phase ’0 and a smooth phase evolution ��t� (with-
out loss of generality, we assume ��t� � 0 at the arrival
time t � t0). We define the term smooth as follows. A
phase ��t� is smooth if this function and its first three
derivatives are continuous and we have

��������
df
dt

��������� _F
��������
d2f

dt2

��������� �F; (2)

for all t and where f�t� � �2���1d�=dt is the instanta-
neous frequency. The chirping rate limits _F and �F are
chosen based on the allowed upper bounds obtained from
general astrophysical arguments on the GW source of
interest. The chirp model thus includes four parameters
p � fA;’0; t0; ����g which are not known a priori and
need to be determined from the data.

Let the signal be correctly sampled at the Nyquist rate
fs � 1=ts and let us assume that we acquire the data xk by
blocks of N samples. The GW signal is denoted by sk �
s�kts� for k � 0; � � � ; N � 1 with the duration T � tsN.
The noise nk is assumed to be additive white and
Gaussian with zero mean and unit variance. Since the noise
of GW detectors is colored, this noise model implies that a
whitening procedure has been already applied to the data.
(Therefore, the signal sk in Eq. (3) is a ‘‘whitened’’ version
of the actual GW signal).

In this initial work, we restrict the smooth chirp model to
have a constant envelope, although GW chirps are gener-
ally amplitude modulated. The constant envelope thus
limits the descriptive power of the model. However, we
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argue that the model is still reasonable for many cases1 and
that the phase information plays a major role for detection
of chirps. We leave the problem of detecting amplitude
modulated chirps for subsequent work.
III. OPTIMAL DETECTION OF A SMOOTH CHIRP

For each block of N data samples, the signal detection
problem is to decide which statistical hypothesis suits best
to the data among the following two:

�H0� xk � nk noise only (3a)

�H1� xk � sk � nk signal� noise (3b)

In practice, this requires thresholding a functional of the
data, commonly referred to as statistic. If the statistic
crosses the threshold, H1 is chosen as opposed to H0 and
vice versa.

Because of the presence of random noise, this decision
may not be always the right one. There are two types of
errors associated to this: false alarms (decide H1 while H0

is present) and false dismissals (the opposite). The proba-
bilities of occurrence of these two errors fully quantify the
performance of a given statistic. This information can be
used to rank the large number of possible statistics and to
identify the best one. This is the approach followed by the
Neyman-Pearson (NP) criterion [15]: the NP-optimal sta-
tistic minimizes one error probability, while keeping the
other fixed to a given value. To be precise, in the present
case, it minimizes the false dismissal probability for a fixed
false alarm probability.

It can be shown that the likelihood ratio (LR) defined by
� � P�fxkgjH1�=P�fxkgjH0� is NP-optimal [15]. For the
detection problem described in Eq. (3), the LR can be
easily obtained if we assume that the chirp parameters p
are known in advance. When the parameters are not known
a priori (which is the situation here), the ideal would be to
have a statistic which is NP-optimal for all values of the
parameters. This statistic is usually referred to as uniformly
most powerful. However, it is not guaranteed that such
statistic always exists, and even if it does, it is generally
difficult to obtain.

A sensible solution consists in getting some kind of
estimates for the unknown parameters and then use the
LR assuming that the estimated value is the actual value. If
we use maximum likelihood (ML) estimators of the un-
known parameters, the resulting statistic is referred to as
generalized likelihood ratio test (GLRT) [15] (or maxi-
mum likelihood test in the statistical community).
1It is important to stress here that the model applies to the
whitened chirp. For inspiralling binary chirps crossing the entire
detector bandwidth, the envelope of whitened chirp is flatter than
the original GW signal. For the other cases, this fact depends on
the location of the chirp within the detector band.
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The GLRT can be shown to be uniformly most powerful
in certain cases [15]. For our problem, up to our knowl-
edge, this is an open question. Strictly speaking, it is thus
not correct to qualify the GLRT as ‘‘optimal’’ (as is often
done in the literature on GW data analysis). Nevertheless,
we continue this misuse of language since the GLRT has
proven to perform reasonably well and no better alternative
appears to be available.

In the following subsections, we give the derivation of
the GLRT statistic. We proceed with the maximization of
likelihood ratio with respect to the parameters. Following
[16], we note that out of the four parameters, A, ’0 and t0
are extrinsic parameters (known as kinematical or dynami-
cal parameters) whereas ���� is an intrinsic parameter
(which determines the shape of the chirp waveform). On
the basis of this distinction, the maximization over the
extrinsic parameters can be treated in a simple manner
whereas the computation of the ML estimate of the intrin-
sic parameter requires a more sophisticated numerical
treatment.

A. Maximize the likelihood ratio: A and ’0

In this subsection, we maximize the LR with respect to A
and ’0. In case of Gaussian noise, it is more convenient to
use the log-likelihood ratio (LLR) which is expressed by

��x; p� � ln� �
XN�1

k�0

xksk �
1

2

XN�1

k�0

s2
k: (4)

We introduce �sk � cos��k � ’0� (such that sk � A �sk)
with the norm N �

PN�1
k�0 �s2

k.
The maximization of the LLR ��x; p� over A is straight-

forward and gives the expression of the ML estimate of the
amplitude, namely Â �

PN�1
k�0 xk �sk=N . Inserting this ex-

pression into Eq. (4), we obtain

��x; fÂ; ’0; t0; ����g� �
1

2N

�XN�1

k�0

xk �sk

�
2
: (5)

The analytical maximization of the LLR over ’0 de-
serves a little more attention. The same calculation has
been performed for the detection of chirps from inspiral-
ling binaries [17,18] but it is based on the assumption that
N is independent of’0 which is not valid in the context of
arbitrary chirps. In Appendix A, we detail this calculation
and discuss the validity of this assumption.

We express the resulting statistic ‘�x; t0; �� �
��x; fÂ; ’̂0; t0; ����g� using the following notations for
the cross-correlation of the data with the two quadrature
waveforms,

xc �
XN�1

k�0

xk cos�k xs �
XN�1

k�0

xk sin�k; (6)

and for the norms and cross-products of cos�k and sin�k,
-3
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nc �
XN�1

k�0

cos2�k ns �
XN�1

k�0

sin2�k; (7a)

nx �
XN�1

k�0

cos�k sin�k: (7b)

We distinguish two cases. In the degenerate case where
the two quadrature waveforms are linearly dependent (�k
is a constant), O � ncns � n

2
x vanishes and we have

‘�x; t0; �� � �x2
c � x2

s�=�2N�: (8)

Otherwise O> 0, the optimal statistic is

‘�x; t0; �� � �nsx2
c � 2nxxcxs � ncx2

s�=�2O�; (9)

and is commonly referred to as quadrature matched filter-
ing, (see Appendix A).

B. Maximize the likelihood ratio: � and t0
The statistic ‘ results from a quadratic combining of the

cross-correlations defined in Eq. (6). It can be seen as a
‘‘generalized dot-product’’ and can be related to a ‘‘dis-
tance’’ measuring the discrepancy between the data and
template waveforms (or, in short, templates) defined by the
phase� [see Eq. (A8)]. Maximizing ‘ over� is equivalent
to minimizing this distance.

The expression in Eq. (9) is for a given known phase �.
If the phase is unknown but belongs to the set of smooth
chirps, then we need to minimize the distance within this
feasible set. In other words, we need to find that smooth
chirp which best fits the data i.e., find

‘max�x; t0� � max
all smooth chirps

f‘�x; t0; ��g: (10)

This maximization is difficult to tackle analytically and
has to be done numerically. The set of smooth chirps is a
continuous set and hence not easy to manipulate numeri-
cally without discretizing it. For this purpose, we introduce
chirplet chains, which we discuss in the next section.

As described earlier, we process the data stream block-
wise. We compute the statistic independently for each
block. The maximization over t0 is obtained by comparing
‘max for neighboring blocks and selecting the maximum.
The ML estimate of t0 is then given by the starting time of
the corresponding block. The period separating two suc-
cessive starting times thus defines the resolution of the
estimate. If required, this resolution can be improved by
increasing the overlap between two neighboring blocks.

We now concentrate on the maximization of ‘�x; t0; ��
over � in a given block. In the following, we remove t0
from the arguments of ‘ to keep the notations simple.
042003
IV. CHIRPLET CHAINS: A TIGHT TEMPLATE
GRID FOR SMOOTH CHIRPS

In this section, we show that chirplet chains (CCs) can
be used to construct template grids for smooth chirps. CCs
are based on the simple geometrical observation: broken
lines give good approximations of smooth curves. CCs are
signals whose (instantaneous) frequency is a broken line.
We verify that they are good approximation of the fre-
quency curve of an arbitrary smooth chirp. We obtain the
conditions ensuring that, for any smooth chirp, there al-
ways exists a sufficiently close CC. If these conditions are
satisfied, the set of the CCs forms a tight template grid
which can be used to search for an unknown smooth chirp.
Finally, we examine the implementation of such grid for
the toy (but realistic) model given by the inspiralling
binary chirp.

A. Chirplet chains: piecewise linear frequency

All smooth chirps in Eq. (1) are supported in the TF
domain D, a rectangle of width T and of height equal to the
Nyquist bandwidth fs=2, as illustrated in Fig. 1. Let f�tj �
j�t; fm � m�f�; j � 0; � � � ; Nt; m � 0; � � � ; Nfg be a regu-
lar TF grid led on D by splitting the time axis into Nt
intervals of size �t � T=Nt, and the frequency axis into Nf
bins of size �f � fs=�2Nf�.

In the following, the subscripts j and m designate the
index of the time interval and the frequency bin of the grid,
respectively. The index k 2 f0; � � � ; N � 1g denotes the
time index of a sample.

A chirplet is a short piece of signal whose frequency
varies linearly between two successive nodes of the grid. In
the time interval j, we denote the time and frequency
coordinates of the chirplet extreme points by �j;mj� and
�j� 1; mj�1�. In the TF plane, it is thus represented by a
line joining the grid nodes �tj; fmj

� and �tj�1; fmj�1
� (see

Fig. 1). Concretely, this means that the phase �k � ��tsk�
of a chirplet is a quadratic function of time, as follows, for
tj � kts < tj�1

�k � ajt
2
j;k � bjtj;k � �j�1; (11)

where aj � ��fmj�1
� fmj

�=�t, bj � 2�fmj
and tj;k �

tsk� tj.
We build the chirplet chain (CC) by enforcing chaining

rules. The frequency and phase of this chain are continu-
ous. Clearly, the continuity of the frequency is ensured by
construction, while the phase continuity requires that

�j�1 � ��t�fmj
� fmj�1

� � �j�2; (12)

for j 	 1, and fixing ��1 � 0. We also require that the
slope of the chirplet frequency as well as the difference
between the slopes of the frequencies of two consecutive
chirplets are bounded absolutely. These bounds are given
by the two parameters N0r and N00r respectively such that
-4
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FIG. 1. Chirplet chains—The TF domain of interest D is tiled by a regular TF grid of Nt time intervals and Nf frequency bins. A
chirplet is a short piece of signal whose frequency varies linearly between two successive nodes of the grid. It is thus represented by a
line joining the grid nodes. The slope of the chirplet frequency is limited (triangular region in light gray, here N0r � 1). We chain the
chirplets, imposing the continuity of the chain and limiting the difference between the slopes of two consecutive chirplets (triangular
region with dark gray stripes, here N00r � 1). Admissible chirplets in time interval j belong to the intersection of these two regions
associated to the regularity constraints. Clearly, a chirplet chain is represented by a broken line in the TF plane.
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(i) jmj�1 �mjj � N0r and
(ii) jmj�1 � 2mj �mj�1j � N00r .

Clearly, a CC is represented by a broken line in D. The
two parameters N0r and N00r control the regularity of this
line. Consistently, we will refer to (i) and (ii) as regularity
constraints.

The instantaneous frequency of a smooth chirp is asso-
ciated to a smooth curve in D. In the same manner that
broken lines are good approximations of smooth curves,
CCs are good approximations of smooth chirps. Since CCs
form a finite discrete set, they sample2 the set of smooth
chirps. In other words, they form a template grid of this set.

It is important to know whether this template grid is
sufficiently tight i.e., whether for any smooth chirp, there
always exists a sufficiently close CC. The template grid
tightness is controlled by the choice of the four parameters
defining the set of CCs, namely, the TF grid parameters Nt,
Nf and the regularity parameters N0r and N00r . The first and
preliminary step to address the tightness question is to
define a distance measuring the ‘‘similarity’’ (or ambigu-
ity) between two different chirps.

B. Distance in the set of smooth chirps

We follow the approach suggested in [18] and assume
that we ‘‘receive’’ a chirp whose phase � is different than
the template phase �
. We set xk�̂sk � A cos��k � ��,
and consider

L ��;�
� �
‘�s;�� � ‘�s;�
�

‘�s;��
: (13)
2Strictly speaking, CCs do not sample the set of smooth chirps
since they do not belong to this set (the second derivative of their
frequency is not defined at the boundaries of the grid time
intervals and it is thus not bounded).
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Clearly, L measures the reduction factor of the ‘‘detec-
tion peak’’ due to the mismatch between the chirp present
in the data and the chosen template. It is a relative mea-
surement done with respect to the ideal case where the
template matches exactly the considered chirp. In this
sense, it can be interpreted as a SNR loss.

Since L 	 0 and equals 0 when � � �
, it can be
interpreted as a distance between the chirps. Note that L
does not depend upon A. It depends only on the phases �
and �
, but this dependency is difficult to perceive intui-
tively from its definition in Eq. (13).

An approximated but much simpler expression can be
obtained when the chirp and the template are close by
Taylor expanding L for small �k � �
k ��k and retain-
ing the leading terms. The approximation is detailed in
Appendix B and leads to the following expression

L ��;�
� �
1

N

XN�1

k�0

��k ���2; (14)

with � � 1=N
PN�1
k�0 �k.

Interestingly, we recognize in this expression the em-
pirical estimate of the variance of the phase difference �k.
With this definition of the distance, two chirps are ‘‘iden-
tical’’ (their distance measured by L is zero) if and only if
they have the same phase evolution up to an additive offset.

C. Is the CC grid tight?

In this section, we address the grid tightness problem
and find the regularity and TF grid parameters which yield
a tight template grid of CCs. We proceed as follows: we
first consider an arbitrary smooth chirp of phase �. Then
we construct a CC ‘‘geometrically’’ close to this chirp. We
check if this CC is admissible i.e., if it satisfies the regu-
larity constraints. This imposes two conditions on the
-5
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parameters. Finally, we check whether it is effectively close
to the chirp (as measured by the distance). This yields the
loss due to the approximation of the chirp by a CC in the
worst case. For tight CC grid, this loss (homogeneous to a
SNR loss) has to be small which imposes one more con-
dition on the parameters.

1. Geometrically close CC

Let ��t� and f�t� be the phase and frequency of an
arbitrary smooth chirp. The frequency evolution appears
as a smooth curve in the TF plane.

We construct a CC geometrically close to this chirp as
follows: for each j � 0; � � � ; Nt, we choose the node
�tj; f
j � of the jth column of the TF grid defined in
Sec. IVA which is nearest to the point �tj; f�tj��. We
draw the broken line which joins these nodes (see
Fig. 2). The associated CC is the geometrically close CC
to the chirp under consideration and we denote its phase
�
.

2. Admissibility of the geometrically close CC

For given chirping rate limits _F and �F, the geometrically
close CC may or may not satisfy the regularity constraints.
This depends on the regularity and TF grid parameters.
Below, we investigate this question.

a. 1st order regularity—Let us consider the chirplet of
the interval j, we have

jf
j�1 � f


j j � jf



j�1 � f�tj�1�j � jf�tj�1�

� f�tj�j � jf
j � f�tj�j: (15)

Using the mean value theorem3 (see e.g., [19]), we get
jf�t� � f�s�j � _Fjt� sj from which we deduce a bound
on jf�tj�1� � f�tj�j. By construction, we have jf
j �
3Let the function g��� be continuous in the open interval �a; b�
and differentiable in the closed interval �a; b
. The mean value
theorem states that there exists c in �a; b� such that g�b� �
g�a� � _g�c��b� a� where _g��� is the derivative of g���.
Consequently, we have jg�b� � g�a�j � _Gjb� aj with _G �
supx2�a;b�� _g�x��.
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f�tj�j � �f=2 and this leads to

jf
j�1 � f


j j � �f � _F�t: (16)

Thus, the geometrically close CC satisfies the regularity
constraint (i) mentioned in Sec. IVA if

N0r 	 _F�t=�f � 1: (17)

We rewrite this condition in the following form

N0r 	 4
N0

Nt

Nf
2N
� 1; (18)

where N0 � _FT2 is an adimensional quantity which de-
pends only on the fundamental characteristics of the
smooth chirp model.

b. 2nd order regularity—We consider two successive
chirplets in intervals j� 1 and j. Using a similar method,
the difference of their slopes can be bounded by

jf
j�1�2f
j�f


j�1j� jf�tj�1��2f�tj��f�tj�1�j�2�f:

(19)

Two consecutive applications of the mean value theorem
to a function f��� which satisfies Eq. (2) for all s 2 �r; t

with 0 � r < t � T yield the following result

jf�t� � 2f�s� � f�r�j � �F��t� s�2� �r� s�2�=2

� _Fjt� 2s� rj : (20)

Using r � tj�1, s � tj and t � tj�1, we get

jf
j�1 � 2f
j � f


j�1j �

�F�2
t � 2�f: (21)

Therefore, the geometrically close CC satisfies the regu-
larity constraint (ii) mentioned in Sec. IVA if

N00r 	 �F�2
t =�f � 2: (22)

We rewrite the above condition as

N00r 	
4

3

�
N00

Nt

�
2 Nf

2N
� 2; (23)

where N00 �
������������
3 �FT3
p

is an adimensional quantity which
depends only on the fundamental characteristics of the
smooth chirp model, and thus from the astrophysical input.
It is related to the maximum overall curvature of the chirp
-6
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frequency or more precisely to the largest number �FT3 of
Fourier bins that the chirp frequency can sweep, the linear
trend being removed.

3. Is the geometrically close CC effectively close?

We obtain a worst case estimate of the distance between
the smooth chirp and its geometrically close CC by bound-
ing the variations of their phase difference. We begin with
bounding the frequency discrepancy.

The starting point is the following lemma (inspired from
[20], p. 23) obtained from the application of the mean value
theorem and some algebraic manipulations. If f��� satisfies
Eq. (2) for all s 2 �r; t� then��������f�s� �

�
f�r� �

s� r
t� r

�f�t� � f�r��
���������� �F�t� r�2:

(24)

However, this upper bound can be slightly improved: the
term �t� r�2 overestimates the more precise bound g�s� �
minf�t� s��t� �s� r�=2�; �s� r���s� t�=2� r�g. [Note
that g�t� � 0 and g�r� � 0 as expected.] In the worst
case, we have s � �t� r�=2 and g�s� � 3=8�t� r�2 as
opposed to �t� r�2. We include this gain in the following.

We apply the lemma in Eq. (24) with t � tj�1 and r �
tj. The term inside the square brackets in the left hand side
of Eq. (24) is equal to the frequency at time s of the chirplet
obtained by joining f�tj�1� to f�tj� (see the dot-dash line in
Fig. 2). We denote this frequency ~f�s�, and then obtain

jf�s� � ~f�s�j � 3 �F�2
t =8: (25)

Since jf�s� � f
�s�j � jf�s� � ~f�s�j � j~f�s� � f
�s�j
and j~f�s� � f
�s�j � �f=2, we have

jf�s� � f
�s�j � 3 �F�2
t =8� �f=2 � �f: (26)

By definition ��t� ���r� � 2�
R
t
r f�s�ds. Integrating

both sides of the above inequality between two successive
points r � ts�k� 1� and t � tsk for k 2 f1; � � � ; N � 1g,
we get

j�k � �k�1j � 2��fts; (27)

which constrains the variations of the phase difference
�k � �
 ��
k.

We prove in Appendix C that the approximated distance
L��;�
� as shown in Eq. (14) is maximum under this
constraint, when �k � �2��ftsk. In this case, the maxi-
mum is L��;�
� � ���fT�

2=3 � �0.
We can finally state the following tight template grid

theorem: for all smooth chirps of phase �, there exists a
CC of phase �
 such that

L ��;�
� � �0; (28)

where �0 � �2T2�3 �F�2
t =4� �f�

2=12 is the maximum
(i.e., in the worst case) energy SNR loss due to the mis-
042003
match between the smooth chirp and the chosen template
given by a close CC. The corresponding maximum ampli-
tude SNR loss is � � 1�

���������������
1��0

p
� �0=2 for small �0.

Note that the amplitude SNR loss is linked to the minimal
match MM defined in [18] by the relation MM � 1��.
We express the maximum SNR loss � in terms of the CC
parameters as

� �
�2

96

�
1

2

�
N00

Nt

�
2
�

1

2

�
2N
Nf

��
2
: (29)

In principle, this loss can be made arbitrarily small by
choosing Nt and Nf adequately. Therefore, the grid of CC
can sample the set of smooth chirps tightly.

It is evident that two types of losses contribute to�. The
first one is related to the geometrical error due to the fact
that the model is a broken line: within the time intervals of
the TF grid, the model is a straight line which cannot
perfectly follow the curvature of the smooth chirp fre-
quency. The finer the grid along the time axis, the smaller
the time interval, the better the line fits the smooth chirp
frequency, thus reducing this error. The other is related to
the quantization error as we require the node of the best
broken line to belong to the TF grid: there is a difference
between the best broken line we can possibly draw and the
closest (quantized) one with vertices belonging to the grid.
The finer the grid along the frequency axis, the closer the
quantized line from the original, thus reducing this error.

When Nt � N00 and Nf � 2N, the maximum SNR loss
is of order ��2=96 � 10% and the two types of errors
contribute equally. The same maximum SNR loss can be
achieved with other choices for Nt and Nf. In the next
section, we propose a criterion to solve this
indetermination.

D. Smallest tight CC grid

As elaborated in the previous section, the tight template
grid theorem gives the condition on the TF grid parameters
Nt and Nf which ensures that the template set (the CCs)
covers all the feasible set (the smooth chirps) with a given
accuracy specified by the maximum SNR loss. The same
accuracy can be achieved with several pairs of parameters,
leading to a parameter indetermination.

For a small maximum SNR loss, the maximization of the
LLR in Eq. (10) performed over the set of smooth chirps
can be safely replaced by a maximization over the set of
CCs, i.e.,

‘max�x� ’ max
all CCs

f‘�x;��g: (30)

The statistic ‘max in Eq. (30) results from the CC which
maximizes the statistic or in other words, from the wave-
form of the template set which best fits the data. Generally
speaking, when the data is noise only, the larger the number
of (reasonably different) waveforms in the template set, the
-7
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Virgo.

5For nonrotating stars, the LSCO is when the objects are at the
distance r � 6 GM=c2.
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larger the risk that one of the waveforms fits the noise and
consequently, the larger the false alarm rate.

The TF grid parameters Nt and Nf influence very differ-
ently the number of CCs. The above argument suggests to
select the parameters which minimize the numbers of CCs,
for a given specified maximum SNR loss. We refer to the
smallest tight CC grid as the set of CCs which results from
this constrained optimization.

Let us first estimate the number of CCs. According to the
regularity conditions, each of the number Nc � Nf�2N0r �
1� of possible chirplets in a given time interval can be
chained to (at most) 2N00r � 1 chirplets in the next time
interval. Counting CCs is then a combinatorial problem.
We haveNc chirplets in the first time interval, and 2N00r � 1
possible choices for the Nt � 1 successive time intervals.
Neglecting what happens at the lower and upper bounda-
ries of the frequency axis (i.e., near DC and Nyquist), we
obtain an upper-bound on (the logarithm of) the number
Ncc of CCs as

lnNcc & ln�2N0rNf� � �Nt � 1� ln�2N00r � 1�: (31)

In practice, we have Nt � 1. The second term largely
dominates the right-hand side and the first term can be
neglected. We thus have lnNcc � Nt ln�2N00r � 1�.

At this point, it is convenient to introduce u � N00=Nt
and v � 2N=Nf and express the smallest tight CC grid
problem with these variables. From the regularity con-
straints, we have N00r � 4u2=�3v� � 2. We want to mini-
mize the number of CCs

lnNcc / g�u; v� �
1

u
ln
�
8

3

u2

v
� 5

�
; (32)

subject to a given maximum SNR loss i.e., u2 � v � C �
8
�������
6�
p

=�.
Combining the derivatives of the objective dg �

@ugdu� @vgdv and of the constraint dv � �2udu, we
obtain the equation giving the admissible point where the
derivative dg=du vanishes, viz.

lny
y� 5

�
7

4y
�

3

4
� 0 (33)

where we defined y � 8u2=�3v� � 5. This equation can be
solved numerically and gives y � 8:95. Let � � u2=v �
3�y� 5�=8 be the ratio between the two errors contributing
to �. We obtain the smallest tight template grid when this
ratio is �� 1:48. For a required �, we get the parameters
of the resulting grid as follows. Using the constraint, we
have u �

��������������������������
C�=�1� ��

p
and v � C=�1� ��, from which

we obtain the parameters,

Nt � 0:52��1=4N00; Nf � 0:78��1=2N: (34)

Interestingly, this also implies that N00r � 4�=3� 2 � 4
is a constant (i.e., does not depend on �). The last parame-
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ter N0r is directly determined by substituting Eqs. (34) in
(18).

The parameters of the smallest tight template grid may
not be always suitable in practice (see the later discussion
on the implementation and numerical contingencies in
Sec. V B 5) but they give interesting indications.

At this point, it is useful to see with an example if the
proposed model and template grid sound tractable in a
realistic case.

E. Toy model and CC parameters

We use the inspiralling binary chirps as a toy model to
check whether the various parameters have reasonable
order of magnitudes in this physically realistic situation.
We consider the Newtonian approximation of the chirp
whose frequency evolution is given by [17]

f�t� � f0

�
1�

t� t0
T

�
�3=8

for t < t0 � T; (35)

where t0 denotes the arrival time. In practice, the arrival
time corresponds to the time at which the chirp enters the
detector’s bandwidth i.e., when its frequency reaches the
low frequency (seismic) cutoff (denoted f0) of the inter-
ferometric detectors. T defines the chirp duration, i.e. the
time taken by the chirp from the arrival time until the
binary coalescence.

The chirp duration can thus be estimated by

T � 1:3s
�
f0

20

�
�8=3

�
M

50M�

�
�5=3

; (36)

where M is the total mass (objects of equal masses).
In this calculation, we assume the seismic cutoff fre-

quency4 of 20 Hz.
We fix _F and �F to the corresponding values of the first

and second derivatives of the chirp frequency, pertaining to
the last stable circular orbit (LSCO5) viz.,

fLSCO � 88:4 Hz
�
M

50M�

�
�1
; (37)

_F� 1:33 kHz=s
�
M

50M�

�
�2
; (38)

�F� 74 kHz=s2

�
M

50M�

�
�3
: (39)

We note that T; fLSCO; _F and �F decrease with an increas-
ing mass. When M increases, the chirp is thus shorter, less
steep and curved, and it reaches only the lower part of the
-8



BEST CHIRPLET CHAIN: NEAR-OPTIMAL . . . PHYSICAL REVIEW D 73, 042003 (2006)
frequency band. From the above equations, we deduce that

N0 � 2:2� 103

�
M

50M�

�
�16=3

; N00 � 698
�
M

50M�

�
�4
:

(40)

The sampling frequency fs is fixed by the width of the
observational band of the GW detector, namely fs �
2048 Hz. We thus have

N � fsT � 2662
�
M

50M�

�
�5=3

: (41)

Following Sec. IV D and fixing � � 10%, the smallest
tight CC grid has the following parameters for the TF grid

Nt � 645
�
M

50M�

�
�4
; (42)

Nf � 6566
�
M

50M�

�
�5=3

; (43)

and for the regularity, we have

N0r � 17
�
M

50M�

�
�4=3

; N00r � 4: (44)

The orders of magnitude for the various parameters
appear to be reasonable. Since these parameters do not
increase with M, the template grid defined with the above
values remains acceptable and tight for higher massesM 	
50M�.
V. FIND THE BEST CHIRPLET CHAIN

In Sec. IV, we have shown that the SNR loss due to the
use of a CC instead of the ideal template can be made small
with an appropriate choice of parameters i.e., by making
the CC grid tight. In other words, the problem of detecting
a smooth chirp is equivalent to the one of detecting a CC as
stated by Eq. (30). The maximization over the set of CCs—
involved in the latter case—has the great advantage that it
can be resolved numerically.

A. The exhaustive search is not feasible

Since CCs are in finite number, an obvious maximiza-
tion procedure is to try them all and select the one which
gives the maximum. To understand whether this solution is
tractable, we need to know how many CCs are there. We
consider that the search parameters Nt, Nf, N0r and N00r are
known and can be obtained from the physical and grid
tightness requirements as discussed earlier.

We already presented an estimate of the number of CCs
in Eq. (31) and saw that it grows exponentially with the
number of time intervals of the TF grid. This estimate
computed for the toy model example presented in the
previous section gives log10Ncc � 1400. Clearly, this num-
ber is too large for an exhaustive search (i.e., computing ‘
for all possible CCs) to be carried out in real-time on
042003
existing computers. Generally speaking, since the number
of CCs increases exponentially with Nt, the cost of an
exhaustive search scales exponentially with Nt and thus
with the problem size N.

In the next section, we propose an algorithm which gives
a good estimate for the optimal CC instead of the exact
solution of the maximization problem described in
Eq. (30). However, as opposed to the exhaustive search,
the computational cost of this algorithm scales as a poly-
nomial of the problem size N.

B. Near-optimal search

The maximization of ‘�x;�� in Eq. (30) is a combina-
torial maximization problem. The existence of an efficient
solving algorithm for such problem is related to the struc-
tural properties of the ‘‘objective’’ function to be maxi-
mized, that is, ‘ in the present case. In this section, we
show that ‘ can be reasonably approximated by a path
integral computed over a time-frequency representation
(TFR) of the data. The structure of the approximated
statistic allows us to perform its maximization efficiently
with dynamic programming. The approximation goes
through two stages with an intermediate step for the re-
formulation of the statistic in the TF plane.

1. Approximation 1: for a CC, cosine and sine are almost
orthogonal

As shown in Eq. (A8), the statistic ‘ can be expressed as

‘�x;�� �
1

2

��XN�1

k�0

xk~ck

�
2
�

�XN�1

k�0

xk~sk

�
2
�
; (45)

where the templates ~ck and ~sk are the orthonormalized
counterparts of the waveforms in quadrature cos�k and
sin�k obtained from the Gram-Schmidt procedure as given
below

~c k �
cos�k�����
nc
p ~sk �

nc sin�k � nx cos�k���������
ncO

p : (46)

Let fcos�kg and fsin�kg be the vectors in RN associated to
the quadrature waveforms. As it appears in the above
expressions, these vectors are generally not orthonormal.
Their deviation from orthonormality can be quantified with
two parameters, defined by

� �
nc � ns
nc � ns

; � �
2nx

nc � ns
; (47)

which are related to their vector lengths nc, ns and their
scalar product nx. The parameter � measures the relative
difference in the vector lengths while � measures the angle
between them. The vectors are orthonormal if and only if
both � and � are zero.

Intuitively, if the quadrature waveforms oscillate suffi-
ciently, they should be close to orthonormality and � and �
are expected to be small. This intuition is examined in
-9
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detail in Appendix D, in which we exploit the fact that � is
not arbitrary but it is the phase of a CC. We show that if �
is the phase of a CC whose node frequencies are in the
bandwidth fl � fmj

� fs=2� fl for all j with

fl � 2:5�f
������
N0
p �Nf

N

�
3=2
�
0:1
	

�
1=2
; (48)

then j�j & 	 and j�j & 	.
In the following, we assume that this condition is sat-

isfied. This imposes the CC frequency not to approach
arbitrarily close to the DC nor to the Nyquist frequencies.
Since the amplitude of the instrumental noise of GW
interferometers diverges rapidly when going close to DC,
it is not expected to detect GWs at low frequencies.
Therefore the reduction of the bandwidth in the low fre-
quency region should not be a problem as long as fl
remains small. We will check later with examples that
the reduction of the useful bandwidth is indeed sufficiently
small.

Using Eqs. (46) and (47), we can write ~ck and ~sk in terms
of � and � as

~c k �
�

2

N�1� ��

�
1=2

cos�k; (49)

~s k �
�

2

N�1� ��

�
1=2 �1� �� sin�k � � cos�k�����������������������������

1� ��2 � �2�
p ; (50)

noting that nc � N�1� ��=2, ns � N�1� ��=2 and nx �
N�=2.

Inserting this expression in Eq. (45) and taking the limit
for small � and �, we find that ‘�x;�� ! ‘̂�x;�� � �x2

c �

x2
s�=N, the reminder R��; �� � ‘̂�x;�� � ‘�x;�� being

given by

R��; �� �
1

N
��x2

c � x2
s� � 2�xcxs � ��2 � �2��x2

c � x2
s�

1� ��2 � �2�
:

(51)

Considering that we have �2 � �2 � 	2 (see
Appendix D) and

jx2
c � x

2
s j

x2
c � x

2
s
� 1;

j2xcxsj

x2
c � x2

s
� 1; (52)

the relative error can be bounded as

jR��; ��j

‘̂�x;��
�

2	� 	2

1� 	2 � 2	; (53)

for small 	.
Provided a good choice of 	 (and checking the conse-

quences on fl), this approximation error can be made
small. We can safely replace ‘ by ‘̂ which we express as
the following complex sum :

‘̂�x;�� �
1

N

��������
XN�1

k�0

xk exp�i�k�

��������
2
: (54)
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2. Go to time-frequency: Moyal

The expression of ‘̂ in Eq. (54) computes the canonical
Hermitian scalar product between the data and a complex
template waveform. While Parseval’s formula allows an
equivalent formulation of this scalar product in the fre-
quency domain, Moyal’s formula does the same in the TF
domain, provided the use of a unitary TFR. One such TFR
is the discrete Wigner-Ville (WV) distribution defined in
[21] and given by

wx�n;m� �
Xkn

k��kn

xpn;kx


qn;ke

�2�imk=�2N�; (55)

with kn � minf2n; 2N � 1� 2ng, pn;k � bn� k=2c and
qn;k � bn� k=2c where b�c gives the integer part. The argu-
ments ofwx are the time index n and the frequency indexm
which correspond in physical units, to the time tn � tsn
and the frequency is fm � fsm=�2N� for 0 � m � N and
fm � fs�N �m�=�2N� for N � 1 � m � 2N � 1. Thus,
the frequency axis gets sampled at twice the usual rate
(as performed by the FFT). The WV distribution is asso-
ciated with a particular sampling of the TF plane. As
discussed later in Sec. V B 5, this leads to some restrictions
on the TF grid used for defining CCs.

Let fxkg and fykg be two time series. Moyal’s formula
states that [21]

��������
XN�1

k�0

xky


k

��������
2
�

1

2N

XN�1

n�0

X2N�1

m�0

wx�n;m�wy�n;m�: (56)

Using Eqs. (54) and (56), we rewrite ‘̂ as the inner-
product of two TFRs, namely, the WV of the data wx and
the template WV we which is the WV of complex template
waveform ek � expi�k,

‘̂�x;�� �
1

2N2

XN�1

n�0

X2N�1

m�0

wx�n;m�we�n;m�: (57)

Qualitatively, we expect that the TFR of a chirp signal
have large values essentially in the vicinity of a curve
corresponding to their instantaneous frequency and van-
ishes elsewhere. The template WV we being the TFR of a
chirp, it shares these characteristics. In the following sec-
tion, we make use of this feature to simplify the statistic.

3. Approximation 2: the WV of a CC is almost Dirac

With continuous time and frequency variables, it is well-
known that ([22], p. 130 and also 217) the WV of a linear
chirp (i.e., a chirp whose frequency is a linear function of
time) is a Dirac distribution along the TF line associated to
the chirp frequency.

We assume that this remains reasonably true for discrete
time and frequency and when the chirp is nonlinear (and, in
particular, when it is a CC). More precisely, we consider
that we have
-10



FIG. 3. Discrete Wigner-Ville of two chirp signals—The signals are normalized to unit ‘2 norm and we show the contour at the level
1/8. Left: when the chirp frequency is a linear function of time, its WV is almost Dirac along the corresponding TF line in the TF half
plane associated to positive frequencies. For the negative frequencies, the WV distribution exhibits aliasing terms (we highlight them
by a background in light gray) which we neglect in the simplified model in Eq. (58). Right: when the chirp frequency is not linear
(here, it is a parabolic chirp), interference terms appear (evidenced by a dark gray background). Their contribution are also disregarded
in the simplified model. Note that the WVof the nonlinear chirp chosen for this illustration do present aliasing terms (with a light gray
background), but they have a smaller amplitude than in the linear case.

6If we see the WV as a Lebesgue measure (although this is an
misuse of language since the WV can take negative values), the
integral in Eq. (59) effectively defines a path length.
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we�n;m� � 2N��m�mn�; (58)

where mn � �2Tfn
 where ��
 denotes the nearest integer.
Here, fn is the instantaneous frequency of the (possibly

nonlinear) chirp. Equation (58) dissembles two approxi-
mations which we explain now.

For discrete time and frequency, the discrete WV of a
linear chirp can be calculated analytically [21]. For the
positive frequencies i.e., for 0 � m � N, the model in
Eq. (58) is an acceptable approximation of the exact result,
as illustrated in Fig. 3. However, there is a significant
difference in the negative frequencies i.e., for N � 1 �
m � 2N � 1. In this region, the discrete WV exhibits
aliasing terms (clearly seen in the left panel of Fig. 3)
which are closely related to the unitarity property of the
WV. In [21], the aliasing terms are shown to be oscillating
terms (switching signs) with smaller amplitude than the
preponderant terms modeled by Eq. (58). We can then
expect their contribution to the summation in Eq. (57) to
be negligible.

It is well known [22] that interference terms appear
when computing (both continuous and discrete) WVs of
nonlinear chirps. They can be related to the quadratic
nature of this distribution (see [22] for a detailed analysis
of the nature and geometry of these interferences).
Interference terms change sign rapidly (see Fig. 3, right
panel) and can be neglected for the same argument invoked
for aliasing terms.

Inserting Eq. (58) into Eq. (57), we get the following
approximation of ‘̂ :

~‘�x;�� �
1

N

XN�1

n�0

wx�n;mn�: (59)
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We see that this statistic results from the integral of the
WV of the data along the TF path determined by the CC
frequency fn. In other words, this integral is the area under
this TF path. We refer to this quantity as the path length.6

With this approximation, the maximization of the sta-
tistic in Eq. (30) amounts to finding the path giving the
largest integral, or the longest path. Efficient methods exist
for longest path problems [23]. These methods exploit the
structural properties of path length (or integral) measure-
ment, in particular, additivity. The length of this entire path
can be measured by splitting the path and summing the
length of its constituent parts. Thanks to this property, the
maximization problem can be decomposed into a recursive
series of small problems, each of them being solvable in
polynomial time. This is the main principle of dynamic
programming (DP), which we describe in the next section.

We remind the reader that, contrarily to the new statistic
~‘, the exact statistic ‘ is not additive. DP cannot be applied
to maximize ‘.

4. Maximization with dynamic programming

DP is a classical method [23] for solving combinatorial
optimization problems. As explained in the previous sec-
tion, the idea is to decompose the problem into smaller
ones that can easily be solved. In our context, the natural
decomposition is given by the tiling of the time axis into
chirplet intervals i.e., tj � tsn < tj�1 or equivalently jb �
n � �j� 1�b� 1 where b � �t=ts is the number of
-11
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samples in an interval. The overall path integral is equal to
the sum of the integrals computed in each chirplet interval
marked with a superscript index as follows

~‘�x;�� �
XNt�1

j�0

~‘j�x;�� (60)

with ~‘j�x;�� �
1

N

X�j�1�b�1

n�jb

wx�n;m
j
n�; (61)

where mj
n � �2Nf

j
n
 and the frequency fjn follows the line

joining the grid points �tj; fmj
� and �tj�1; fmj�1

�. We also
denote with a subscript index j, the path integral up to
interval j, viz.

~‘ j�x;�� �
Xj
j0�0

~‘j
0

�x;��: (62)

DP relies on the principle of optimality. We elaborate
this principle with the help of Fig. 4. We consider the
chirplet in time interval j. In a chain passing through this
chirplet, the regularity constraints limit the choice of pre-
ceding chirplets in the time interval j� 1. We suppose that
there are only three such chirplets; namely �, 
 and �.

Now, consider the time interval j� 1. We assume that
we know the chain passing through the chirplet z (z being
either �;
 or �) and giving the largest path integral
summed up to the interval j� 1. We denote this quantity
by ~‘�z�j�1. (In this discussion, the chirplet and its associated
CC are designated by the same label).

We compute the path integral contribution in jth interval
for the considered chirplet, and add the result to ~‘�z�j�1 to

obtain ~‘�z�j for all the three paths z � �;
 and �.
We mark with �?� the optimal chain associated to the

global maximum of ~‘ (i.e., summing from interval 0 to
Nt � 1) which we denote ~‘�?�. We further assume that this
optimal chain �?� follows ��� up to interval j� 1, contin-
ues following the considered chirplet in interval j and
f /2s

j=1

frequency

0

0

... j

t
j

interval 
j=0

[...]

[...]

[...]

α

β
γ

FIG. 4. Principle of
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proceeds to the last interval j � Nt � 1 with some chain
���, hence ~‘�?� � ~‘���j � ~‘��� where ~‘��� denotes the con-
tribution of the chain ���.

The principle of optimality states that the optimal chain
�?� has the largest path integral ~‘�?�j�1 at interval j� 1 as
compared to all the other chains passing by the same
chirplet in interval j. In particular, this means that ~‘�?�j�1 �

~‘���j�1 is larger that ~‘�
�j�1 and ~‘���j�1.

Proof by contradiction: Let us assume that ~‘�
�j�1 >
~‘���j�1.

We construct the chain �4� formed by �
�, the considered
chirplet in interval j and the chain ���. This CC is admis-
sible. By construction, its path integral ~‘�4� � ~‘�
�j � ~‘���

is larger than ~‘�?�. Therefore, the chain �?� is not optimal
which contradicts our hypothesis—QED.

We apply this principle recursively starting from interval
j � 0 and incrementing. For each chirplet interval and for
all Nc chirplets of interval j, we keep only the CC max-
imizing the path integral up to this point and we discard the
others. This procedure ‘‘prunes the combinatorial tree’’
and avoids to consider useless candidates before going to
the next interval.

When the recursion reaches the last interval Nt � 1, we
end up with a number Nc of CCs ending with a different
last chirplet and having the maximum path integral among
all chains with the same last chirplet. Finally, within these
‘‘short-listed’’ candidates, we select the chain with the
largest ~‘ which is the global maximum.

5. Numerical contingencies and computational cost

To summarize, we started with the initial problem in
Eq. (30) of finding the CC with the largest statistic. We
rephrased this problem (using approximations) into a lon-
gest path problem in the TF plane. Here, path refers to the
TF curve followed by the frequency of the CC, and the
length is given by the integral of the WV of the data along
the path. The maximization of the path length over the set
N −1t

timeT

...

t
j+1

[...]
δ

optimality of DP
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8Freely distributed scripts are available at http://www.obs-
nice.fr/ecm for reproducing all the illustrations presented here.
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of CCs can be performed efficiently using DP. The result-
ing algorithm is tractable numerically as shown by the
estimate obtained in the second part of this section.

The definition of the CCs does not comprehend the fact
that we only have access to discretized versions of the data
and of their associated TF domain, denoted D in Sec. IVA.
We begin this section by a discussion on these aspects.

a. Discretization issues—On one hand, the definition of
the set of CCs relies on a TF grid sampling the continuous
TF domain D. Theoretically, this grid can be refined
arbitrarily. On the other hand, the search operates effec-
tively using the discretized version of D, resulting from the
sampling associated to the WV. This fixes a maximum TF
resolution which cannot be surpassed.

It is useless to increase the resolution of the TF grid used
for defining CCs beyond the one defined by WV. The WV
divides the time axis into N intervals and the frequency
axis into N bins.7 Consequently, we have the following
limitations, Nt � N and Nf � N. Furthermore, in order to
have time intervals (resp. frequency bins) of equal size , the
TF grid parameters Nt (resp. Nf) must be divisors of N.

All these requirements limit the choice of Nt and Nf. It
may happen that the parameters of smallest tight CC grid
are not suitable because of that. Note that in the case we
consider, we are generally led to adopt the finest resolution
for the frequency axis i.e., Nf � N.

b. Estimate of the computational cost—

We estimate the computational cost by counting the
floating point operations for all the primary subparts in
the course of the procedure. The computation of the WVof
the data involves N FFTs with time base 2Nf [21], such
that the cost of this part is about 5NNflog2Nf (assuming a
standard implementation with RADIX-2).

The number of operations required by DP is better
estimated by grouping them by types, rather than by a
sequential assessment. The path integral ~‘j in Eq. (61) is
computed (with b additions) only once for each Nc chirp-
lets of all Nt intervals, with a corresponding cost equal to
NcN.

For each of the Nc chirplets in each interval, the algo-
rithm selects among the (at most) 2N00r � 1 possibly con-
nected paths. This procedure is repeated Nt � 1 times, and
thus requires �NtNc�2N00r � 1� operations.

Knowing that the number of chirplets is Nc � �2N0r �
1�Nf, the overall cost C thus scales with

C/5NNflog2Nf��N��2N
00
r �1�Nt
�2N

0
r�1�Nf; (63)

which is a polynomial of the problem size.
7It is possible to modify slightly the definition of WV in
Eq. (55) to get a finer sampling of the frequency axis and keep
unitarity. We reserve this possibility for later investigations.
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VI. APPLICATIONS

In this section, the proposed method is evaluated with
several numerical tests and compared with two other TF
based algorithms for the detection of unmodeled chirps,
namely, the Signal Track Search (STS) [12] and Time-
Frequency Clusters (TFC) [14]. The simulation code8 of
these tests uses the implementation of these algorithms
provided by [24]. We first give a brief presentation of
STS and TFC.

A. Existing algorithms

1. Signal Track Search

We have seen earlier that the TFR of a chirp signal can
be essentially described in the TF plane as a regular align-
ment of large values forming ‘‘ridges’’ along the instanta-
neous frequency evolution. The STS uses this observation
as a heuristic basis: detecting chirps amounts to finding
ridges in a TFR.

In practice, the algorithm extracts the ridges from the
WV distribution9 of the data. Because of the presence of
noise, image processing techniques are required to get a
good ridge extraction. The authors chose an algorithm
which is normally used for road extraction from aerial
images. This algorithm is based on the fact that a ridge is
a locus of points having a maximum curvature (as mea-
sured by the second derivative) in the transverse direction
and a small gradient along the longitudinal direction. A
hysteresis thresholding procedure is applied over the sec-
ond derivative of the WV (smoothed by a low pass filter) to
detect TF points which suffice the above condition, and to
grow iteratively chains of TF points from these ridge
precursors. In [12], the ridge length (number of TF points
in a ridge) is then employed as the detection statistic.
However, we do not use this definition here, but we rather
consider the one given by the largest path integral com-
puted along the detected ridges. We observed that this
variation outperforms the original definition of STS.

2. TFClusters

TFClusters is initially thought to detect short oscillatory
transients (and not specifically chirps). The TFR of such
transient is sparse i.e., the TF contents is essentially de-
scribed by few components of large amplitude. The basic
idea of TFClusters is that, for reasonable SNR, the ampli-
tude of the transient components is larger than the noise.

This motivates the thresholding of the TFR of the data,
given by the spectrogram (modulus square of short-time
In [12], the authors use the standard definition of the discrete
WV originally proposed by Claasen-Mecklenbräuker (see [21]
for a definition and a detailed discussion). This definition differs
from the one presented in Sec. V B 3. In particular, it does not
satisfy unitarity.
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Fourier transform), to retain the TF points with the largest
values. A clustering algorithm is used to group the selected
points. ‘‘Significant’’ clusters are chosen whose cardinals
are greater than a threshold. ‘‘Insignificant’’ clusters are
merged iteratively if they are sufficiently close to eventu-
ally form significant clusters. The statistic is then chosen to
be the maximum sum of the TF powers over the clusters in
the resulting list of significant clusters.

3. Discussion

It is important to stress a major difference between STS
and TFClusters and the proposed method. By construction,
the formers work well provided that the signal ‘‘stands
above’’ the noise somewhere in the TF plane. If we define
a local SNR in the TF plane (by computing at a given TF
point, the squared difference of the mean values of the TFR
under the hypotheses H0 and H1 divided by its variance
under H0), then this is equivalent to say that the local SNR
has to be large at least for some TF points. However, just
like the standard matched filtering, a detection with the
best CC algorithm requires the global SNR (obtained by
summing the local SNRs for all TF points) to be large.
Clearly, this is a less stringent condition.

TF path integration is a central ingredient of the best CC
search. This idea is also used for other methods developed
for the detection of other GW sources. For instance, for
inspiralling binaries, we can cite [25,26] and for the peri-
odic GW sources, the Hough transform [27] and the stack
slide searches [28].

Several distinctions must be stressed. First, the TF rep-
resentation we use here (discrete WV) satisfies a specific
and crucial property, namely, unitarity. This allows us to
link the final statistic to the quadratic matched filtering. TF
representations based on short-time Fourier or wavelet
bases used by the above methods are not unitary. Second,
the other methods require a precise model of the TF path
(relying on the astrophysical source modeling) as opposed
to our method.

For the problem addressed here i.e., the detection of
unmodeled chirps, we have shown that CCs can be treated
as an effective finite template grid. We could then imagine
to apply one of the above methods and integrate along the
entire set of TF paths associated to CCs. This is however
computationally impossible because of the too large num-
ber of CCs, as already discussed in Sec. VA.

B. Newtonian chirps: illustrations and benchmark

For the illustration of the best CC search, we use the
Newtonian chirp signal introduced in Sec. IV E. We recall
that the frequency of such chirp is a power law given by
Eq. (35). Normally, the Newtonian chirp also includes a
prescribed evolution of the chirp amplitude. However, for
simplicity and better match with our initial model, we
decide not to take this into account and keep the chirp
envelope to a constant.
042003
The Newtonian chirp is completely defined by the total
mass M of the binary (if we assume that the objects have
equal masses) and its initial frequency f0. Figure 5 presents
an example of a typical Newtonian chirp signal, where we
set M � 7:3M� and f0 � 96 Hz. The chirp duration is
T � 0:5 s. We fix the sampling frequency to fs �
2048 Hz (therefore, the number of samples is N � Tfs �
1024). A white Gaussian noise of unit variance is added to
the signal.

Within the GW literature, it is customary to define the
SNR through matched filtering (assuming the initial phase
is known a priori). We follow this definition which gives in
the present case,

�2 �
XN�1

k�0

s2
k � A2N=2: (64)

We note that, with this definition we have �2 � 2‘�s;��
(the factor of 2 accounts for the unknown initial phase).

We choose to scale the chirp amplitude to a SNR � �
20.

We apply the best CC search to this signal with the
following search parameters. We arbitrarily fix the chirping
rate limits to be _F � 8192 Hz=s and �F � 917:5 kHz=s2.
These values are quite smaller than the ones expected at the
LSCO (see Sec. IV E) but the time instant when these
limits are reached is close (few tenths of milliseconds
before) to the LSCO. In Fig. 5, the time instants when
the chirp (the solid line on the right panel) reaches the
chirping rate limits (with dotted vertical lines) and when
the binary system reaches LSCO (with dashed-dotted hori-
zontal line) are indicated. We fix the frequency axis sam-
pling to the finest accessible resolution i.e.,
Nf � N � 1024. Similarly, we choose the smallest pos-
sible chirplet size with Nt � N=2. The rest of the parame-
ters are derived from the regularity constraints. In this
respect, it is useful to calculate the adimensional character-
istics of the problem i.e., N0 � 2048 and N00 � 586:6. The
resulting parameters are N0r � 9 and N00r � 3, which gives
a maximum SNR loss � � :28.

We recall that the best CC search relies on the approxi-
mation of the optimal statistic by a complex sum presented
in Sec. V B 1. The parameter 	 controls the relative preci-
sion of this approximation. From the results of Sec. V B 1
and the above general chirp specifications, the approxima-
tion holds with a precision 	 � 0:14 in a frequency band-
width �fl; fs=2� fl
 with fl � 96 Hz which coincides (at
least for the low frequencies, which are most important)
with the frequency support of the present chirp.

Figure 5 presents the result of the best CC search with
the above choice of parameters. The best CC closely
matches the actual instantaneous frequency in the region
where the regularity constraints are satisfied.

An example is obviously not sufficient to evaluate the
method thoroughly. Receiver operating characteristics
(ROC) gives a systematic assessment of the performance.
The ROC of a given statistic l is the diagram giving the
-14



FIG. 5 (color online). Newtonian chirp in white Gaussian noise—Left: WV distribution of the signal. Only positive contributions are
displayed (negative ones are set to zero) with a gray-scaled color map going from white (minimum i.e, zero) to black (maximum).
Right: the best CC in dashed/red closely matches the actual instantaneous frequency in solid/green in the region where the regularity
constraints are satisfied. We indicate the instant when the chirp reaches the chirping rate limits with the dotted vertical lines and the
frequency at LSCO with dashed-dotted horizontal line.
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detection probability Pd�l0� � P�l 	 l0jH1� versus the
false alarm probability Pfa�l0� � P�l 	 l0jH0� at a given
SNR and for all thresholds l0.

For this exercise, due to computing limitations, we
prefer short signals with a small number of samples N.
We choose a Newtonian chirp with total mass M � 11M�
and initial frequency f0 � 96 Hz which has a short dura-
tion T � 250 ms. Choosing the sampling frequency fs �
1024 Hz, we have N � 256 samples. White Gaussian
noise is added to the signal and the amplitude is scaled
such that the SNR is � � 10.

We fix the chirping rate limits to _F � 8:192 kHz=s and
�F � 1:05 MHz=s2. Like the above example, these limits

are reached at a time instant close to the LSCO. We choose
the finest TF grid parameters Nt � 128 and Nf � 256, and
the regularity parameters N0r � 9, N00r � 4. The resulting
CC grid is tight with � � 0:4.

Concerning STS10 and TFClusters,11 we set their free
parameters empirically using the recommendations avail-
able in the references, without a precise fine-tuning.
Figure 6 displays a single trial and Fig. 7 presents the
ROCs of the three methods presented previously. We see
that the best CC search outperforms the two others as
expected.

Here, we wish to add few remarks regarding the com-
parison between the best CC search and STS. The improve-
10Following the notations of [12], the size of the Gaussian
kernel of the presmoothing filter is fixed to 
 � 2. The low and
high thresholds of the hysteresis are set to 3:3=pixel2 and
10=pixel2 resp.

11The TFR is given by the short-time Fourier transform com-
puted over nonoverlapping blocks of 16 samples (i.e., intervals
of � 7:8 ms). The frequency axis is tiled into 32 bins (i.e., a
resolution of 32 Hz). We use the nominal values given in [14] for
the rest of the parameters namely p � 0:1, 
 � 5, � �
�0; 0; 0; 0; 0; 0; 2; 3; 4; 4
 and � � 0:25.
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ment in the ROC of the best CC with respect to STS has
two origins. First, the use of a unitary discrete WV instead
of the standard WV helps in increasing the detection
probability by few percent. The unitarity preserves the
power in TF plane and hence improves the efficiency.
Second, the major part of the improvement comes from
the TF pattern search procedure. As explained in Sec. VI A,
the use of a global search criterion instead of a local one is
a crucial ingredient.

It is interesting to compare these ROCs with what could
optimally achieve an imaginary observer which knows in
advance the targeted chirp. Since this clairvoyant observer
knows the chirp phase exactly, he can apply the optimal
statistic i.e., the quadrature matched filter obtained in
Appendix A. The ROCs of the quadrature matched filter
can be obtained analytically (under Gaussian noise hypoth-
eses). The false alarm and detection probabilities are given,
respectively, by [29]:

Pfa�l0� � exp��l0�; (65)

Pd�l0� � 1� exp���2
c=2�

X�1
n�0

��2
c=2�n

n!
Il0�n� 1� (66)

where Iy�x� � 1=��x�
Ry

0 e
�uux�1du is the incomplete

Gamma function.
This ROC depends only on one parameter, namely, the

SNR �c. The ROC curve of the clairvoyant statistic with
�c � � provides an absolute upper bound on the detection
probability. Obviously, having in hand all the information
makes a very large difference with respect to the case
where we only know that the incoming GW is a smooth
chirp. The detection probability of the clairvoyant statistic
is very close to 1 over the entire range of values chosen for
the false alarm rate. This is why we do not show this curve.
It is more interesting to compare the performances of the
-15



FIG. 6 (color online). Newtonian chirp in white Gaussian noise—Left: WV distribution of the signal (displayed similarly as in
Fig. 5). Right: actual chirp frequency in solid/green and best CC in dashed/red. We indicate where the chirp reaches the chirping rate
limits with dotted vertical lines and the frequency at LSCO with dashed-dotted horizontal line.
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various methods with the ones of the clairvoyant observer
for SNRs �c < �. More precisely, we adjust �c in such a
way that the resulting curve matches reasonably well the
ROC of the best CC search in the region of interest i.e., for
false alarm probabilities in the range 10�5 to 10�4. Since
the SNR is inversely proportional to the distance of the GW
source, the ratio of the actual SNR to the best-fit value
�=�c gives the reduction factor of the sight distance with
respect to the ideal (and nonaccessible) situation where we
have at our disposal all the information about the chirp we
want to detect. We include the fitted clairvoyant ROC in
 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1e-05  1e-04  0.001  0.01  0.1  1

de
te

ct
io

n 
pr

ob
ab

ili
ty

false alarm rate

receiver operator char. (N=256, SNR=10.0)

qmf (fit: SNR=6.15)
cc  
sts 
tf c

FIG. 7 (color online). Newtonian chirp in white Gaussian
noise—Comparison of ROCs of the best CC search (dashed/
blue, with error bars in solid/red) with STS (dotted/magenta) and
TFC (dashed-dotted/cyan). The computation of each ROCs is
perfomed over 2� 105 trials (half for the false alarm probability
and half for the detection probability). The diagram also includes
the ROC of the clairvoyant quadrature matched filter (bold
dashed/green) shown here with the SNR �c � 6:15 adjusted to
reasonably fit the ROC of the best CC search.
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Fig. 7. The ratio in the sight distance can be estimated
�10=6:15 � 1:6.

C. Random CCs and robustness

While benchmarks based on Newtonian chirps are sat-
isfactory for a comparison of several detection methods in
a nominal situation, they do not provide a test for the
robustness i.e., a measurement of the ability to detect
reliably a large class of different chirps.

In this section, we present ROC curves computed using
random CCs. Random CCs are generated by chaining
chirplets which are randomly chosen in a range specified
by regularity constraints. Therefore, the frequency of a
random CC follows a kind of random walk in the TF plane.
We generate a new random CC for each trial made to
estimate the detection probability.

The detection of random CCs is obviously much more
difficult than the detection of a single chirp. It is an
effective test of the method robustness. No classical ap-
proaches (e.g., based on banks of quadrature matched
filters as for inspiralling binary chirps) can be applied
successfully in this case.

We assume the same general characteristics of the
Newtonian chirp used in the first example in the previous
section, namely T � 0:5 s, fs � 2048 Hz, thus N � 1024
samples, _F � 8192 Hz=s and �F � 917:5 kHz=s2. We al-
ready computed satisfactory search parameters for this
setup. Therefore, they remain unchanged (Nt � 512, Nf �
1024,N0r � 9 andN00r � 3). The random CCs are generated
on the same basis, but with a time interval slightly larger,
the regularity parameters being increased accordingly i.e.,
Nt � 64, Nf � 1024, N0r � 65 and N00r � 57. We use an
additive white Gaussian noise.

Figure 8 presents an example of such signal (with SNR
� � 20) and the result of the application of the best CC
search. Figure 9 displays the ROC curve of the best CC
-16



FIG. 8 (color online). Random CC in white Gaussian noise—In these plots, we arbitrarily set fs � 1. Top left: example of a random
CC in white Gaussian noise. Top right: noise free random CC. Bottom left: WV distribution of the signal (displayed similarly as in
Fig. 5). Bottom right: actual chirp frequency in solid/green and best CC in dashed/red. It is worthwhile to note that, although the best
CC can lose track for some time because of noise fluctuations, it is able to recover the exact TF path.
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search (with SNR � � 12) along with the one of the
clairvoyant quadrature matched filter adjusted to an ade-
quate SNR. We estimate a loss in the sight distance with
respect to the clairvoyant case to be a factor of �2:6. Best
CC search ‘‘sees’’ to distances comparable to (in the sense,
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FIG. 9 (color online). Random CC in white Gaussian noise—
This diagram displays the ROC of the best CC search (dashed/
blue, obtained from 2� 105 trials) compared with the analytical
ROC of the clairvoyant matched filter (bold dashed/green) with
the SNR �c � 4:55, adjusted to produce a reasonable fit.
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with a reduction factor less than 1 order of magnitude)
what classical methods achieve in other GW detection
problems.

The computational cost of this search as estimated by
Eq. (63) is about 1:42� 108 of floating points operations
for one block of duration T � 0:5 s. Assuming 10% over-
lap between successive blocks, real-time processing can be
achieved with a computing power of 2.8 Gflops which is
less than what a single standard workstation can handle
today.
VII. CONCLUDING REMARKS

Smooth chirps define a general model of ‘‘nearly physi-
cal’’ GW chirps. Chirplet chains—chains of linear chirp-
lets—allow the design of tight template grids for the
detection of smooth chirps. The optimal detection requires
these grids to be searched thoroughly to find the template
which best matches with the data. Although the shear large
number of templates prevents the use of an exhaustive
search, near-optimal detection can be performed with the
time-frequency based procedure presented here. Its origi-
nality lies in the clear link established between the optimal
statistic and the proposed search algorithm. In particular, it
justifies the choice of a specific time-frequency represen-
tation (the unitary discrete WV) and pattern search algo-
rithm (TF path integral and dynamic programming). We
-17
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have evaluated that best CC search is computationally
tractable for detection of typical GW chirps.

It is important to emphasize several features which
makes the proposed method attractive in practice. First,
the free parameters (the chirp duration T and the chirping
rate limits _F and �F) are few and directly related to physical
characteristics. Second, the principle ‘‘He who can do more
can do less’’ applies here: smooth chirps is a very general
class of chirps. This model, and thus the search algorithm
can be easily modified and adapted to incorporate addi-
tional astrophysical information. For instance, it is easy to
search only chirps with an increasing (or decreasing) fre-
quency. One may also want a more stringent constraint on
the chirping rate at low frequencies than at high frequen-
cies. The inclusion in the algorithm of a dependency of the
chirping rate limit upon the frequency is straightforward.
This leaves the possibility of a compromise between effi-
ciency (since the restriction of the set of admissible wave-
forms due to additional constraints reduces the false alarm
rate) and robustness, depending on the quantity and relia-
bility of the information available on a specific GW source.
Third and finally, it is simple to restrict the search to chirps
starting and/or finishing at given time-frequency location.
This feature could be used for partially known chirps
whose waveforms is known only on a part of the total
duration. Those signals could be detected with a hybrid
approach combining a standard matched filtering where the
waveform model is available, and best CC search for the
rest.
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APPENDIX A: MAXIMIZING LLR ���� OVER THE
INITIAL PHASE ’0

In this appendix, we maximize the statistic
��x; fÂ; ’0; t0; ����g� over the initial phase ’0. We recall
that

��x; fÂ; ’0; t0; ����g� �
1

2N

�XN�1

k�0

xk �sk

�
2
; (A1)

where N �
PN�1
k�0 �s2

k is the norm of �sk � cos��k � ’0�.
To keep the notations simple, we do not mention all
parameters explicitly in this appendix and set ��x;’0� �

��x; fÂ; ’0; t0; ����g�.
In the literature concerning the detection of inspiralling

binaries of compact objects [17,18], this maximization is
usually performed assuming that N is independent of ’0.
042003
This assumption is correct when the two quadratures cos�k
and sin�k, viewed as vectors of RN , are orthonormal (i.e.,
orthogonal and of same norms). In this case, we have nc �
ns � N=2 and nx � 0 where nc, ns and nx are the norms
and cross-products of the quadratures as defined in
Eqs. (7). Inserting this into

N � nccos2’0 � nx sin�2’0� � nssin2’0; (A2)

we conclude that N � N=2 is a constant.
However, for general phase evolution, the quadrature

waveforms are not necessarily orthonormal. This is ap-
proximately true when the chirp oscillates sufficiently
rapidly during many cycles (e.g., for inspiralling binaries
of small mass). Since we are considering chirps with an
arbitrary phase and of relatively short duration, such as-
sumption is not realistic and we opt for the general case
keeping the dependency of N upon ’0.

Expanding �sk in terms of two quadratures and rewriting
Eq. (A1), we get

��x;’0� �
�xc cos’0 � xs sin’0�

2

2�nccos2’0 � nx sin�2’0� � nssin2’0�
;

(A3)

where xc and xs are the cross-correlation of the data with
cos�k and sin�k as defined in Eq. (6).

To proceed with the maximization, we first examine the
special case where the quadratic waveforms are linearly
dependent i.e., cos�k / sin�k for all k. This implies that
we are in the degenerate case where �k � ’0 is constant.
Introducing the two angles ’ � arg�xc � ixs� and 	 �
arg�

�����
nc
p
� i

�����
ns
p
�, we can rewrite Eq. (A3) as

��x;’0� �
1

2

x2
c � x

2
s

nc � ns

cos2�’� ’0�

cos2�	� ’0�
: (A4)

The proportionality of the quadrature waveforms im-
plies that

�����
nc
p

xs �
�����
ns
p

xc � 0 which gives sin�	� ’� �
0, and hence 	 � ’� �Z. We conclude that ��x;’0�
remains constant for all ’0 and is equal to the statistic
given by

‘�x; t0; �� �
x2
c � x

2
s

2N
: (A5)

In the non degenerate case, we compute the derivative of
the statistic as given in Eq. (A3) with respect to ’0. Its
numerator turns out to be a second order polynomial of
tan’0. The root associated to the local maximum is

’̂ 0 � tan�1

�
xsnc � xcnx
nxxs � nsxc

�
(A6)

which gives the ML estimator of the initial phase.
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Inserting this expression in Eq. (A3) yields

‘�x; t0; �� � ��x; ’̂0� �
nsx

2
c � 2nxxcxs � ncx

2
s

2O
; (A7)

where O � ncns � n
2
x > 0.

We can reexpress this statistic as

‘�x; t0; �� �
1

2

��XN�1

k�0

xk~ck

�
2
�

�XN�1

k�0

xk~sk

�
2
�
; (A8)

where ~ck and ~sk are the orthonormalized counterparts of
the waveforms in quadrature cos�k and sin�k obtained
from the Gram-Schmidt procedure as given below

~c k �
cos�k�����
nc
p ; ~sk �

nc sin�k � nx cos�k���������
ncO

p ; (A9)

and referred to as templates of phase �.
In practice, this orthonormalization is indeed performed

for the detection of inspiralling binaries (see [30], p. 3046)
and is justified with heuristic arguments. The derivation
shows that it results directly from the maximization of the
LLR.
APPENDIX B: TAYLOR APPROXIMATION OF THE
DISTANCE BETWEEN CHIRPS

In this appendix, we detail the approximation of the
statistic ‘�s;�
� with sk � A cos��k � ’0� and assuming
that the template phase �
 is close to the phase � of the
signal s present in the data. We start from the following
Taylor expansion of ‘�s;�
� for small �k � �
k ��k

‘�s;�
� � ‘�s;�� �
XN�1

k�0

@k‘j�
���k

�
1

2

XN�1

k;l�0

@2
kl‘j�
���k�l � � � � ; (B1)

where the partial derivatives @k � @=@�
k and @2
kl �

@2=@�
k@�


l are taken with respect to the samples of the

template phase �
. Next, we examine this expansion term
by term and obtain analytical expressions as a function of
the phase samples f�kg and f�
kg.

1. First derivative: local extremum

From Eq. (9), we write the statistic ‘ as the ratio ‘ �
n=d. The numerator is n � nsx

2
c � 2nxxcxs � ncx

2
s and the

denominator is d � 2�ncns � n2
x�. We thus have @k‘ �

�@kn� ‘@kd�=d.
We get the following general expressions of the deriva-

tive of the numerator12
12Here, we adopt the precedence rule @kab � �@ka�b.

042003
@kn � @knsx
2
c � ns2xc@kxc � 2�@knxxcxs � nx@kxcxs

� nxxc@kxs� � @kncx2
s � nc2xs@kxs; (B2)

and of the denominator

@kd � 2�@kncns � nc@kns � 2nx@knx�: (B3)

We insert sk � A cos��k � ’0� and work out each of
their component term. At the match (when �
 � �), we
get

@knsj�
�� � sin2�k; @knxj�
�� � cos2�k; (B4)

@kncj�
�� � � sin2�k � �@knsj�
��; (B5)

@kxsj�
�� � A cos�k cos��k � ’0�; (B6)

@kxcj�
�� � �A sin�k cos��k � ’0�: (B7)

Combining all the above expressions, the derivative @kn
can be factorized, yielding

@knj�
�� � ‘�s;��@kdj�
��; (B8)

where @kdj�
�� � 2�nc � ns� sin2�k � 4nx cos2�k and
‘�s;�� � A2�nccos2’0 � nx sin2’0 � nssin2’0�=2. In
conclusion, the first derivative @k‘j�
�� � 0 vanishes at
�
 � � which is thus a local extremum.

Using the parameters � � 2nx=N and � � �nc � ns�=N
as defined later in Sec. V B (and also discussed in
Appendix D), the statistic and the denominator at the
match can be expressed as functions of � and � as

‘�s;�� �
A2N

4
�1� � cos2’0 � � sin2’0� (B9)

dj�
�� �
N2

2
�1� �2 � �2�: (B10)
2. Second derivative and distance

We show in the previous subsection that the first deriva-
tive at the match @k‘j�
�� vanishes. Consequently, the
second derivative at the match can be expressed simply
in terms of the second derivatives of the numerator and
denominator at the match, namely

@2
kl‘j�
�� �

�
@2
kln� ‘�s;�


�@2
kld

d

�
�
��

: (B11)

We obtain the following general expressions for the
second derivatives of the denominator

@2
kld � 2�@2

klncns � @knc@lns � @lnc@kns � nc@
2
klns

� 2�@knx@lnx � nx@
2
klnx�
: (B12)
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and of the numerator

@2
kln�@

2
klnsx

2
c�2�@knsxc@lxc�@lnsxc@kxc

�ns@kxc@lxc�nsxc@2
klxc��2�@2

klnxxcxs

�@knx@lxcxs�@knxxc@lxs�@lnx@kxcxs

�@lnxxc@kxs�nx@kxc@lxs�nx@lxc@kxs

�nxxs@
2
klxc�nxxc@

2
klxs��@

2
klncx

2
s�2�@kncxs@lxs

�@lncxs@kxs�nc@kxs@lxs�ncxs@
2
klxs�; (B13)

Similarly to the first derivative, we insert the expression
of the signal sk � A cos��k � ’0� and evaluate each of the
component terms of the above expressions. We have to
042003
distinguish two cases i.e., the nondiagonal cross terms of
the Hessian matrix when k � l and the diagonal ones when
k � l.
a. Cross terms, k � l

When k � l, the above Eqs. (B12) and (B13) are sig-
nificantly simplified because all the second order cross
derivatives are zeros (namely @2

klnc � @2
klnx � @2

klns � 0
and @2

klxc � @2
klxs � 0). We get

@2
kldj�
�� � �4 cos2��k ��l�; (B14)

and combined with Eq. (B9),
�@2
kl � ‘�s;�


�@2
kld
�
�� �

A2N
4
�1� cos2��k ��l� � cos2��k � ’0� � cos2��l � ’0� � ��sin2��k ��l � ’0�

� sin2�k � sin2�l � sin2’0� � ��cos2��k ��l � ’0� � cos2�k � cos2�l � cos2’0�
:

(B15)
In Appendix D, we discuss the range of values taken by
� and � depending on the phase �. We show that these
parameters are small �; �� 1 if the phase � is a CC
whose frequency does not come close to DC nor the
Nyquist frequency. We assume that this remains true in
the more general case, when � is the phase of a smooth
chirp. We retain the leading term (of order 0 in � and �) and
get the following approximation

@2
kl‘j�
�� � Xkl �

A2

2N
��1� ĉk��1� ĉl� � ŝkŝl� (B16)

where ĉk � cos2��k � ’0� and ŝk � sin2��k � ’0�.

b. Autoterms, k � l

We consider the case where k � l. Now, the second
order derivatives do not vanish. In fact, we have

@2
kncj�
�� � �2 cos2�k; @2

knxj�
�� � �2 sin2�k;

(B17)

@2
knsj�
�� � 2 cos2�k; (B18)

@2
kxcj�
�� � �A=2�cos�2�k � ’0� � cos’0�; (B19)

@2
kxsj�
�� � �A=2�sin�2�k � ’0� � sin’0�: (B20)

The consequence is an additional term Dkl to the second
order derivative of the statistic @2

kl‘j�
�� � Xkl �Dkl.
With a direct calculation, we obtain its exact expression
(no approximation needed):

Dkl �
A2

2
��1� ĉk��kl: (B21)
where the Kronecker symbol is �kl � 0 for k � l and 1 for
k � l.

3. Approximated distance

From Eqs. (B16) and (B21), and assuming that
j�j; j�j � 1, we have ‘�s;�� � A2N=4. The distance de-
fined in Eq. (13) can thus be written as

L��;�
� �
1

N

XN�1

k�0

�1� ĉk��
2
k �

�
1

N

XN�1

k�0

�1� ĉk��k

�
2

�

�
1

N

XN�1

k�0

ŝk�k

�
2
: (B22)

Considering that �k and �2
k are slowly varying with

respect to ĉk and ŝk, we argue that, similarly to what is
discussed in Appendix D, the positive and negative terms
compensate when making the following sums

P
kĉk�k,P

kŝk�k and
P
kĉk�

2
k. We neglect the small residual, which

leads to the final approximation of the distance in Eq. (14).

APPENDIX C: CONSTRAINED MAXIMIZATION
OF THE DISTANCE

We rewrite the constrained maximization problem de-
scribed in Sec. IV C 3 of the distance in Eq. (14) under the
constraint in Eq. (27) with simpler notations. We relate
them to the initial problem at the end of this appendix.

Let frkg a series of N real numbers. We want to max-
imize the empirical variance V�r� expressed by

V�r� �
1

N

XN�1

k�0

r2
k �

�
1

N

XN�1

k�0

rk

�
2
; (C1)

under the constraint that the increments uk � rk � rk�1 are
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absolutely bounded by some constant U > 0 i.e., jukj � U
for k > 0.

The empirical variance V�r� is invariant by the addition
of an arbitrary constant C: let rk � yk � C, for all k, then
V�r� � V�y�. We can thus assume with no loss of general-
ity that r0 � 0 (i.e., choose C � �y0). Therefore, we have
rk �

Pk
j�1 uj for k > 0.

We want to maximize the convex function V in the set of
feasible solution described by frkgwhich is a polyhedron of
RN . From a classical theorem of convex analysis (see [31],
p. 187), we conclude that V reaches its maximum at one of
the extreme points of this polyhedron. The extreme points
are the points where the increments are either uk � �U or
uk � �U. There are 2N�1 extreme points and we need to
identify the one which maximizes the convex function.

Let us rewrite the empirical variance V�r� as a function
of uk. We leave the ‘‘autoterms’’ u2

k aside (for all extreme
points, the autoterms are equal to U2 independently of the
sign of uk. Their contribution is thus unimportant for the
identification of the maximum) and concentrate on ‘‘cross
terms’’ (i.e., terms in ujuk). A direct calculation leads to

V�r� � Va �
XN�2

j�1

XN�1

k�j�1

cjkujuk; (C2)

where cjk � 2j�N � k�=N2 and Va is the contribution due
to the autoterms.

Since all cjk > 0, the maximum of V is reached when all
uk have the same signs, that is when uk are all identically
�U or�U. Therefore, the empirical variance is maximum
when rk � �kU and in this case V�r� � U2�N2 � 1�=12.

We recall that the distance between the smooth chirps is
well approximated by the empirical variance of the phase
discrepancy [see Eq. (14)]. We apply this result to the
original maximization problem by setting rk�̂�k and
U�̂2��fts as given in Eq. (27).

APPENDIX D: BOUNDING � AND � OF A CC

The simplification of the statistic in Sec. V B is closely
related to the orthogonality and length difference of the
vectors c � fcos�k; k � 0; � � � ; N � 1g and s �
fsin�k; k � 0; � � � ; N � 1g of RN .

Noting that their norms and scalar-product are, respec-
tively, given by nc � hc; ci, ns � hs; si and nx � hc; si as
defined in Eq. (7), the departure from ‘‘orthonormality’’ of
c and s can be quantified by the two parameters

� �
nc � ns
nc � ns

� �
2nx

nc � ns
: (D1)

The parameter � measures the relative difference of the
lengths of c and s while � is related to the cosine of the
angle between the two vectors.

When the vectors c and s are orthonormal i.e., orthogo-
nal and of same lengths, both � and � are zero. By con-
tinuity, for nearly orthonormal vectors, � and � are then
042003
expected to be small. Intuitively, this should be true for
vectors with oscillating components like c and s. Indeed, �
and � can be rewritten in the form of oscillating sums,
namely

� �
1

N

XN�1

k�0

cos2�k � �
1

N

XN�1

k�0

sin2�k: (D2)

The positive and negative contributions cancel in the
summation, and thus leaves a small residual. In this ap-
pendix, we go beyond this intuitive rationale when the
phase � is a CC as defined in Eq. (11) and give a system-
atic investigation of the maximum value taken by � and �.

Equation (D2) motivates us to combine � and � is the
following complex sum S

S � �� i� �
1

N

XN�1

k�0

expi2�k: (D3)

Bounding the modulus of S is equivalent to bounding �
and �. Analytic number theory provides a large number of
results concerning exponential sums like S, for improving
upon the trivial bound jSj � 1. We use one of these,
namely, the Kuzmin-Landau lemma, see [32] p. 7. We
present a proof of this lemma pertaining to the present
case where the phase � is a CC.

The proof can be summarized as follows. A change of
variables is introduced which allows us to put a bound on
the modulus of S by a sum of the finite difference of
complex variables. These new variables appear to be col-
linear in the complex plane. The sum of the modulus of
their difference is thus equal to the distance between the
extremes. The final bound on jSj is then obtained by
combining this property with the explicit expression of
the phase of the CC, provided a constraint on the lower
and higher frequencies reached by the CC.

Let us define for 1 � k � N � 1, the following varia-
bles

dk � 2��k ��k�1� �k �
1

1� exp�idk�
: (D4)

We perform the above change of variables in the sum S
using the relation

exp�i2�k� � �exp�i2�k� � exp�i2�k�1�
�k�1; (D5)

and we get

NS � �1 exp�i2�0� �
XN�2

k�1

��k�1 � �k� exp�i2�k�

� �1� �N�1� exp�i2�N�1�: (D6)

By taking the modulus on both side, we obtain the
following bound,
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NjSj � j�1j � j1� �N�1j �
XNt�1

j�0

X�j�1�b�1

k�jb�1

j�k�1 � �kj

�
XNt�2

j�1

j�jb�1 � �jbj: (D7)

where we split the sum in Eq. (D6) into smaller ones
calculated over chirplet intervals i.e., tj � tsk < tj�1 or
equivalently jb � k � �j� 1�b� 1 with b � �t=ts, the
number of samples in a chirplet interval. In the last sum,
we separate the terms corresponding to the transition be-
tween two consecutive chirplets.

We now obtain a bound on each term of the RHS of
Eq. (D7), starting with the first sum. Equation (D4) can be
rewritten as

�k �
1

2
�1� i cot�dk=2�
: (D8)

The variables �k are all located on the line <��� � 1=2.
Within a chirplet interval, i.e. if tj � kts < tj�1, the

phase difference is a linear function of k given by

dk � 2�ts��2� r�fmj
� rfmj�1


; (D9)

where r � �2tj;k � ts�=�t.
We assume that the node frequencies of the CC are

constrained in the following bandwidth:

fl � fmj
� fs=2� fl; (D10)

where fl � fsc=2 and 0< c< 1=2. In other words, the
CC cannot approach arbitrarily close to neither DC nor the
Nyquist frequency.

Since 0< r< 2, we have 4�tsfmj
� dk � 4�tsfmj�1

if
fmj
� fmj�1

(and the opposite in the other case) which
implies that

0< 2�c � dk � 2��1� c�< 2�; (D11)

for all k, hence �1< =��k�<�1.
If fmj

� fmj�1
(resp. fmj

	 fmj�1
), the phase difference

dk and hence =��k�, increases (resp. decreases) monotoni-
cally with k.

Since their imaginary parts are finite and monotonic, the
variables �k are associated to consecutive points on the line
<��� � 1=2 of the complex plane. The sum of the lengths
of the segments linking two nearby points is equal to the
length between the extremes, thus

X�j�1�b�1

k�jb�1

j�k�1 � �kj � j��j�1�b � �jb�1j: (D12)

Applying the mean value theorem to the function g�x� �
cot�x=2�=2, whose derivative is _g�x� � 1=�4sin2�x=2�� and
using the constraint in Eq. (D11), we obtain the following
042003
bound

j��j�1�b � �jb�1j �
jd�j�1�b � djb�1j

4sin2��c�
: (D13)

We carry on by bounding the numerator

jd�j�1�b � djb�1j � 4�tsjfmj�1
� fmj

j � 4�N0r=N;

(D14)

and denominator with 2c � sin��c� (this is valid for 0 �
c � 1=2) and by summing over all j to finally obtain the
bound on first summation term in Eq. (D7),

XNt�1

j�0

X�j�1�b�1

k�jb

j�k�1 � �kj �
�N0rNt
4Nc2 : (D15)

The second summation coming from the boundary
points of the chirplet intervals can be bounded in a similar
way, considering that

j�jb�1 � �jbj �
jdjb�1 � djbj

4sin2��c�
; (D16)

and combining with

jdjb�1 � djbj � 2�t2s jfmj�1
� fmj�1

j=�t �
4�tsN

0
r

N�t
;

(D17)

we get the result

XNt�2

j�1

j�jb�1 � �jbj �
�tsN

0
rNt

4Nc2�t
: (D18)

Finally, from Eq. (D8), we have the following inequal-
ities

j�kj �
1

2j sin�dk=2�j
�

1

2 sin��c�
�

1

4c
; (D19)

which, when applied with k � 1 and k � N � 1, set an
upper limit to the remaining terms in the RHS of Eq. (D7),
noting that j1� �N�1j � j�N�1j.

Combining this result with Eqs. (D15) and (D18), we get

jSj �
1

2Nc
�
�N0rNt
4c2N2 �1� 1=b�: (D20)

The number of samples in a chirplet interval being an
integer b 	 1, and selecting the dominating contribution,
we conclude that jSj & 	 with

	 �
�N0rNt
2c2N2 : (D21)

This bound is obtained from a worst case estimate.
Generally, � and � are smaller than this value. With the
choice of a small c, a more realistic estimate rather than a
strict bound can be obtained replacing the inequality 2c �
sin��c� by the first order Taylor approximation �c�
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sin��c� in the proof above, yielding the following estimate

	 �
N0rNt
�c2N2 : (D22)

Summarizing, we obtained an upper bound 	 on jSj by
restricting the frequency of the CC in a bandwidth defined
by c. We rather use the reciprocal i.e., we get the limits of
the frequency bandwidth from an acceptable value for 	. If
we assume that N0r � 4�N0=Nt��Nf=�2N�� as given by the
042003
regularity condition, the frequency bandwidth is
�fl; fs=2� fl
 with

fl �
fsc
2
� 2:5

������
N0
p

�f

�Nf
N

�
3=2
�
0:1
	

�
1=2
; (D23)

where the leading constant is obtained from
������������
20=�

p
� 2:5.

We use this result in Sec. V B 1.
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