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Introduction 

The catalytic dehydrogenation (DH) and oxidative dehydrogenation (ODH) of light al-

kanes is widely studied as a route to the formation of alkenes and di-alkenes, important precursor 

molecules for synthetic rubbers, plastics and a variety of other products [1-4]. Recent studies 

have focused on the non-oxidative DH of butane over alumina-supported vanadia catalysts [5-7]. 

In the present work, we provide a detailed understanding of both the role and structure of coke 

deposited on VOx/Al2O3 during reaction. A range of characterisation techniques have been em-

ployed including the first application of terahertz time domain spectroscopy (THz-TDS) to the 

study of coke. Complementary THz-TDS characterisation of carbonaceous materials including 

carbon nanofibres (CNFs) has also been conducted.  

 

Experimental 

The non-oxidative dehydrogenation of n-butane has been conducted over 3.5 wt. % VOx/Al2O3 

Reactions have been conducted in a flow-through quartz reactor connected to an on-line GC. 

Catalyst characterisation has been conducted by THz-TDS, EPR, Raman, NMR, NEXAFS and 

X-ray photoelectron spectroscopies and TEM. Additionally, CNFs have been studied by THz-

TDS as model coke compounds. 

 

Results and Discussion 

Figure 1 shows THz-TD spectra of the carbona-

ceous deposits present on VOx/Al2O3 after reaction 

at various temperatures. Previous studies of coke in 

such systems have employed a variety of tech-

niques, including 
13

C_NMR spectroscopy [7]. 

NMR spectroscopy however, cannot probe ordered 

conducting coke structures, or materials with a high 

density of paramagnetic species. THz-TDS how-

ever, is ideally suited to analysis of such deposits. 

THz-TDS is a relatively new technique and probes 

intermolecular vibrational modes, such as phonon 

vibrations, and free electron density. As such, in 

the case of carbonaceous deposits, greater absorp-

tion in the THz region may be assigned to coke 

with a higher degree of graphitic order. Consider-
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Figure 1.  THz-TD spectra of 

VOx/Al2O3 after reaction. 
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ing the data shown in Figure 1. Below a reaction temperature 

of 600 °C little absorption of THz radiation occurs. Much 

more significant absorption however is observed at higher 

reaction temperatures. This corresponds to a significant 

change in the structure and electronic character of the depos-

ited coke. That this equates to an increase in the order of the 

deposited coke is confirmed through complementary tech-

niques including Raman, NMR, NEXAFS and X-ray photo-

electron spectroscopies, and TEM analysis. For example, 

Figure 2 shows that at a reaction temperature of 550 °C car-

bon platelets cover mainly individual support particles. The 

extent of this coverage increases at higher temperature. The 

change in the electronic nature of the coke is supported by 
13

C NMR spectroscopy studies which reveal detuning of the 

NMR probe due to the formation of conducting coke struc-

tures. Similar 
13

C NMR phenomena have previously been 

observed by other workers [8]. Additionally, the presence of organic radicals at high temperature 

is revealed by EPR spectroscopy. Such radicals are not present in coke deposited at lower tem-

peratures. 

 

That more highly ordered carbonaceous materials show greater absorption of THz radiation is 

confirmed by complementary studies of a series of CNFs. CNFs share many of the same struc-

tural characteristics as the coke deposited at high reaction temperatures over VOx/Al2O3. In this 

work, CNFs which have been heat treated at progressively higher temperatures have been inves-

tigated. This heat treatment has removed any disordered carbon on the nanofibre surface, with 

higher temperatures forming more-ordered structures. In agreement with studies over VOx/Al2O3 

the material with the most ordered structure exhibits the greatest absorption. 

 

Conclusions 

Carbonaceous deposits play a key role in catalytic reaction mechanisms, in particular with regard 

to catalyst deactivation. In the present study THz-TDS has been applied to the study of these ma-

terials for the first time. THz-TD spectra are shown to be directly related to the structure of the 

deposited carbon, demonstrating that this is a valuable new resource in the catalyst characterisa-

tion toolkit. Complementary studies reveal a correlation between the electronic nature of CNFs, 

as revealed by THz-TDS, and their structural characteristics demonstrating that THz-TDS also 

has potential applications in the study of such materials. 
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Figure 2.  TEM micrograph 

of catalyst after re-

action at 550 °C 


