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Gravitational-wave detectability of equal-mass black-hte binaries with aligned spins

Christian Reisswig,Sascha Husa} Luciano Rezzoll&; Ernst Nils Dorband,Denis Pollney! and Jennifer Seilér

1 Max-Planck-Institut fir Gravitationsphysik, Albertiistein-Institut, Potsdam-Golm, Germany
2Depar'[ament de Fisica, Universitat de les llles Balearaln®a de Mallorca, Spain
% Department of Physics and Astronomy, Louisiana State WsityeBaton Rouge, LA, USA
(Dated: July 2, 2009)

Binary black-hole systems with spins aligned or anti-adigiio the orbital angular momentum, and which
therefore do not exhibit precession effects, provide therahground to start detailed studies of the influence of
strong-field spin effects on gravitational wave observatiof coalescing binaries. Furthermore, such systems
may be the preferred end-state of the inspiral of generiersnassive binary black-hole systems. In view of
this, we have computed the inspiral and merger of a largefsshary systems of equal-mass black holes with
spins parallel to the orbital angular momentum but otheswaiditrary. Our attention is particularly focused on
the gravitational-wave emission so as to quantify how musih sffects contribute to the signal-to-noise ratio,
to the horizon distances, and to the relative event ratethéorepresentative ranges in masses and detectors. As
expected, the signal-to-noise ratio increases with thggtion of the total black hole spin in the direction of
the orbital momentum. We find that equal-spin binaries witximum spin aligned with the orbital angular
momentum are more than “three times as loud” as the correapgrbinaries with anti-aligned spins, thus
corresponding to event rates up 30 times larger. We also consider the waveform mismatch betvilee
different spinning configurations and find that, within owmmerical accuracy, binaries with opposite spins
S1 = —S, cannot be distinguished whereas binaries with spin= S, have clearly distinct gravitational-
wave emissions. Finally, we derive a simple expressionHerenergy radiated in gravitational waves and find
that the binaries always have efficienciésa /M 2 3.6%, which can become as large Bs.q /M ~ 10% for
maximally spinning binaries with spins aligned with theitabangular momentum. These binaries are therefore
among the most efficient sources of energy in the Universe.

PACS numbers: 04.25.Dm, 04.30.Db, 95.30.5f, 97.60.Lf

I. INTRODUCTION orbital angular momentum [l11]. In addition, the merger of
binaries with aligned spins yields recoil velocities whiente
ufficiently small (.e., < 450 km/s [12]) to prevent the final
lack hole from being expelled from the host galaxy. This
would then be compatible with the overwhelming astronomi-
'€al evidence that massive black holes reside at the cerfters o
@ost galaxies.
" our parameter space is therefore 2-dimensional,
parametrized by the projections;, a, of the dimen-
sionless spinsi; = S;/M? of the individual black holes
on to direction of the angular momentum (chosen as the
z-axis). As a result, spins that are aligned with the orbital
angular momentum are characterized by positive values,of
az, While anti-aligned spins have negative values. Previous
studies of this parameter spatel[iL2, ,EG, 17], have
. considered the recoil velocity and final spin of the merger
location [10]. remnant, and have constructed phenomenological formulas
In this paper we use gravitational waveforms fromfor these quantities given the initial sping anda, of the
numerical-relativity (NR) calculations of a number of se- binary.
quences of equal-mass spinning black-hole binaries whose In this work, we move our focus to the detectability of
spins are aligned (anti-aligned) with the orbital angular-m g given set of binaries in the parameter sub-space of (anti-)
mentum, and consider the detectability of these binaries foaligned spinsi.e.,for each of these binaries and across a set of
the ground-based gravitational wave-detectors as welb@as f different masses we calculate the signal-to-noise rattR)S
the planned space-based LISA interferometer. for the LIGO m,@], enhanced LIGO (eLIGdﬂZO], ad-

Our interest in this type of binary stems from the fact thatvanced LIGO (AdUGO)l , Virgol[22], advanced Virgo
there are indications they represent preferred configunati  (AdVirgo) [23], and LISA [2425] detectors .

in nature, at least if the black holes are supermassive.sit ha n this way we attempt to address the following questions:
been shown, in fact, that when the binary is surrounded by a
massive circumbinary disc, as the one expected by the merger
of two galaxies, the dissipative dynamics of the matter pro-
duces a torque with the effect of aligning the spins to the (i) How large is the difference in signal-to-noise ratio

It has been a long-standing goal of the field of numerica
relativity to provide results for gravitational-wave dataal-
ysis and thus enhance the capabilities of current and futu
gravitational wave detectors, in particular regarding dibe
servation of compact binary coalescence. With a series
breakthroughs in 2005][L] ﬁ,/S], this long-term goal has sud
denly become reality. However, much further work is recglire
to actually understand the practical implications of nuosr
solutions of the full Einstein equations for gravitatiomeve
data analysis. Indeed, first studies suggest that tempdatesb
that use numerical information can increase the reach eteet
tors [4,[5] 6], aid the calibration of search pipelin€s [79B,
and improve the estimation of parameters, sucle.gs sky

(i) Which among the aligned-spin configurations is the
“loudest” and which one is the “quietest™?
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between the loudest and the quietest? code using the&€act us Computational Toolkit[[26] and the

(iil) How do these considerations depend on the dete(‘tcar pet ] adaptive mesh-refinement driver. The main fea-

. ures of the code have been presented in several papers, and
:ggﬁigﬂ; the mass of the binary, and the number of harr'ecently reviewed in Pollney et al. [13]. The code imple-

ments the “moving-punctures” technique to represent dynam
(iv) Are there configurations whose waveforms are diffi-ical black holes following [[2, 28] (see aIsE[Z%J 30]), which

cult to distinguish and are hence degenerate in the spad&s provento be a robust way to evolve black-hole spacetimes
of templates? For compactness we will not report here the details of the

Overall, and as expected, we find that equal-spinning maxf_ormulation of the Einstein equations solved or the form of
imally anti-aligned binaries generally produce the lov&NR the gauge conditions adopted. All of these aspects are dis-

while equal-spinning, maximally aligned binaries prodtree ~ SUSSed in great detail ih [13], to which we refer the intezdst
highest SNR. For any mass, the SNR can be well describegader. More specific to these simulations, however, isthe n
with a low-order polynomial of the initial spins= p(a1, az) merical grid setup. In thg results p(esent_ed be_Iow we have
and generally it increases with the total dimensionlesn spiused 9 levels of mesh refinement W'th a f_me-grld_ resolution
along the angular momentum direction= L (a; + as) - L of Az/M = 0.02 and fourth-order finite differencing. The

— 9 .

The possibility of describing the whole behaviour of the erav wave-zone grid has a resolution Afx/M = 0.128 and ex-

forms from equal-mass, aligned/antialigned binaries imge teir':rqasctfirgnmig c:arr?e% d]\/{) ut,? ;h:e olli(é%éolgr;verggh ﬁgrev);":;%
of a single scalar quantity, namely, provides a certain ' )

amount of optimism that also more complex spin configura-a spatial position which i819.2 M in each coordinate direc-

tions can, ultimately, be described in terms of a few paramet-'on' Furthermore, because the black holes spins are all di-

ters only. rected along the-axis of our Cartesian grids, it is possible to

We also analyze the impact that higher-order contributiond>€ & re_:ﬂ_e_cnon symmeiry condition across the 0 pulane. Y
The initial data are constructed applying the “puncture

with ¢ < 4 have on the maximum SNR and show that .
for low masses)M € [20,100] they contribute, say for the methOdZBﬂ4] as described [35"]',, ,Y‘,{e have con-
sidered four different sequences labelledras's,” “t” , and

LIGO detector,~ 2.5%, whereas for intermediate masses | . : ;
M > 100 M, they contributex 8% [72]. In addition, we u” along straight Imgs n théuy, az) parameter space, also
determine the ratio between maximum and averaged SNR fdpferred to as the “spin diagram’. As shown in Fiy. 1, these

¢ > 2 which is known to be/5 when considering only the sequences allow us to cover the most important portions of
/ — 9m — 2 mode. We also calculate the mismatch be_the space of parameters which, we recall, is symmetric with

tween the waveforms from different binaries across our—spinresF’ect to the, = a2 diagonal. :
diagram and find that binaries along the diaganak —as We note that similar sequences have also been considered

cannot be distinguished within our given numerical accyrac in [@ﬂfi] but have_ hgre been feF?"CU'aFEd both
whereas configurations along the diaganak a. are clearly ~ USing @ higher resolution and with improved initial orbjak-
different cf. Fig[d and 8, as well as TablellV). Finally, we rameters. More specifically, we use post-Newtonian (PN.) evo
derive a simple expression for the energy radiated in gravit Iut|on_s following the SCh_e”?e OU“'T‘?“?‘ in [36], which pro_efd
tional waves and find that this is bounded betwee.6% a strm_gh';forward prescription fqr '”'“a"da‘?‘ parametaith
and~ 10% for maximally spinning binaries with spins anti- small initial eccentricity, and which can be interpreteghast

aligned or aligned with the orbital angular momentum, respe _of th_e process of matching our nume_rical_ calculations to the
tively inspiral described by the PN approximations. The free pa-

The plan of the paper is as follows: in Sdgct. Il, we recallf@meters to be chosen for the puncture initial data are there
very briefly the numerical set up and illustrate the properti [or€: the puncture cor?r(?]nate locatio6, the BUECtl.”s.b%re
of the initial data used in the simulations. SEct. Il is dedéd m"’I‘SS parameteﬁai,_ the Imear momen;pi, ah” ft : |nb_|V| 3
to the discussion of the gravitational-wave observablesl us ua s_plnsSi. The initia parameters for all of the binaries
for the subsequent analysis, while SECT. IV presents thetses con5|delred are C(_)Ilected in the left part of Ta[ﬂ)le l. The_lahlt
in terms of the SNR and how this is influenced by higher—ordeﬁer’slrat'lg?]s lare fixed mh = 8 M, whereM |s;he thota_l '.n."l
modes. This Section also contains a discussion of the matdf Plac O? rrr:ass, ¢ o_sen_M, =1 (nolte t datt € 'ﬂ't'z. d
between the waveforms from different binaries and an assesé‘DM mass of the spacetime Is n(_)t exa(_:t y_1_ uetot € bind-
ment of the accuracy of our results. SEGt. V, on the other handd €nergy of the black holes), while the individual asyntioto
provides a brief discussion of the analytic expressionsaveh INitial black f;olehmallos_,ses are ftherehfdvf = 1/2. The only
found representing either the SNR or the energy radiated iffxception is for the binary_s, for which D = 10 M.
gravitational waves. Finally, conclusions are summarined

Sect[V].
I1l.  GRAVITATIONAL-WAVE OBSERVABLES

Il NUMERICAL SETUP AND INITIAL DATA In this Section we discuss the gravitational-wave observ-
ables that have been studied from the sample reported in Ta-
The numerical simulations have been carried out usindple[l and how these have been used to compute the radiated
the CCATI E code, a three-dimensional finite-differencing energy, the SNR, the horizon distances and the event rates.



TABLE I: Binary sequences for which numerical simulatiores/é been carried out, with various columns referring to thiecfure initial

location+x /M, the mass parameters; /M, the dimensionless sping, and the normalized ADM maslgf/ADM = M, /M measured
at infinity. Finally, the last four columns contain the nuimel values of the energy radiated during the simulatiomgishe two methods
described in the text and the corresponding errors betwesm,tas well as the error to the fitted values.

| | +x/M  mi /M mo/M ai az (Pz; Py)1 = —(px, Py)2 MADM Eglc} Eg:* err. (o) fiterr. (%)|
o 4.0000 0.3997 0.3998 —0.600 0.600  (0.002103, —0.112457)  0.9880| 0.0366 0.0356 2.8 1.6
72 4.0000 0.3997 0.4645 —0.300 0.600  (0.002024, —0.111106) 0.9878| 0.0407  0.0394 3.3 0.6
T4 4.0000 0.3998 0.4825 0.000 0.600  (0.001958, 0.001958)  0.9876| 0.0459  0.0445 3.1 1.9

T6 4.0000 0.3999 0.4645 0.300 0.600
s_g| 5.0000 0.3000 0.3000 —0.800 —0.800 0.001300, —0.101736 0.9894| 0.0240 0.0231 3.8 3.0
S0 4.0000 0.4824 0.4824 0.000 0.000 0.002088, —0.112349 0.9877| 0.0360 0.0354 1.7 0.2

(0.001901, —0.108648)

( )

( )
s | 4.0000 04746 04746 0200  0.200 (0.001994,—0.110624)  0.9877| 0.0421 0.0410 2.7 L7

( )

( )

( )

0.9876| 0.0523 0.0504 3.8 2.2

S4 4.0000 0.4494  0.4494 0.400 0.400 0.001917, —0.109022 0.9876| 0.0499  0.0480 4.0 2.5
S6 4.0000  0.4000  0.4000 0.600 0.600 0.001860, —0.107537 0.9876| 0.0609  0.0590 3.2 0.2
58 4.0000  0.4000  0.4000 0.800 0.800 0.001816, —0.106162 0.9877| 0.0740 0.0744 0.5 2.2

to 4.0000 0.3995 0.3995 —0.600 —0.600 (—0.002595, 0.118379) 0.9886| 0.0249 0.0243 2.5 1.1
t1 4.0000 0.3996 0.4641 —0.600 —0.300 (—0.002431, 0.116748) 0.9883| 0.0271 0.0264 2.7 1.8
to 4.0000 0.3997 0.4822 —0.600 0.000 (—0.002298, 0.115219) 0.9881| 0.0295 0.0289 2.1 2.2
ts 4.0000 0.3998 0.4642 —0.600 0.300 (—0.002189, 0.113790) 0.9880| 0.0326 0.0317 2.8 1.8
uz | 4.0000 0.4745 0.4745 —0.200 0.200  ( 0.002090, —0.112361)  0.9878| 0.0361 0.0354 2.0 0.2
Ua 4.0000 0.4492 0.4494 —0.400 0.400 (0.002095, —0.112398) 0.9879| 0.0363  0.0355 2.3 0.7
us 4.0000 0.2999 0.2999 —0.800 0.800 (0.002114,—0.112539) 0.9883| 0.0374 0.0363 3.0 3.7
A. NR waveforms tance. Because for most masses, a “real” waveform will be

“longer” than the one computed here, we need to account for

Although the CCATI E code computes the gravitational _th_e_missing frequency band betw_een the Iowercut-o_ff and the
waveforms either via the Newman-Penrose curvature scaldpitial frequency of the wave. This can be accomplished by
W, or via gauge-invariant metric perturbations on a Schwarzattaching to the NR wave the PN part of the wave and will be
schild background, the analysis carried hereafter will aglen ~ discussed in the next Section.
in terms of the latter. While the two prescriptions yield, in The values of the initial frequencies and of the associated
fact, estimates which are in very good agreement with eacfinimum masses/..,;, for each of the detectors considered
other and with differences belo2¥% (see discussion in [13]), are reported in Tablelll.
we have found that the results obtained using gauge-imtaria
guantities have a smaller numerical error, and are thugpref
able. B. Matching PN and NR waveform amplitudes

More specifically, we compute the gravitational-wave am-

H + H . L.
plitudeshy,, andhy,, in terms of the even and odd master  The existence of a cut-off mass set by the initial frequency

functionsQ;,, andQy;,, via the relations [37] of the NR simulations would clearly restrict the validity of
. our considerations to large masses only. To counter this
b (8) = B (8) —ih% (8 = OF (4) —i a'ox (' and thus include a_lso pmarles with smallgr_ masses, we ac-
em(t) = T (8) = thpy, (1) = @ (1) 1/, Qem (). count for the early inspiral phase by describing it via PN ap-

(1) proximations. To produce the PN waveforms, and the PN
where the gauge-invariant perturbations are typically exenergy that we are using directly in Se¢._V B, we have
tracted at a radius of, = 160M (see Sed_IVD for a dis- used the spinning TaylorT1 approximant used in Hannam et
cussion of the accuracy of our measurements and ref. [13] fal. [38], and which is based on the PN expressions described
a comparison among different extraction radii). in [39,(40,[41] 40| 43, 44, 45,146]. The choice of TaylorT1

As mentioned before, all our binaries [butg] have ini-  is motivated by that fact, that in [38] it is found to be more
tial separations oD = 8.0M [D = 10.0M], which, in  robust in the spinning case than the TaylorT4 approximant,
the parameter space that we have considered, leads to a masiich was previously found to yield excellent results in the
imum initial frequency of the numerical waveforms, that is nonspinning casé [47] (seeg.,[47] for a comparison of dif-
wini = 0.084/M. Depending therefore on the makg such  ferent techniques to obtain the gravitational-wave phase i
an initial frequency can be greater than the lower cut-@f fr formation for quasi-circular inspiral). These waveforme a
guency of the detector for a given source at an arbitrary dis3.5 PN accurate in the nonspinning phase, and 2.5 PN accu-
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FIG. 1: Schematic representation in thg, a2) plane, also referred
to as the “spin diagram”, of the initial data collected in l&db These
sequences cover most important portions of the space ofnedess

which is symmetric with respect to the = a» diagonal.

TABLE II: Initial instantaneous frequencie®/w;,; and associated
minimum massed/.,i, of the NR waveforms for the different mod-
els and for each detector according to the correspondingrlout-off
frequency iie.,at 30 Hz for Virgo, at40 Hz for eLIGO, at10 Hz for
AdLIGO/AdVirgo, and atl0~* Hz for LISA). All the values for the
masses are in units of solar masses.

Muwini| Mmin ~ Mmin Mmin Miin

Virgo eLIGO AdLIGO/AdVirgo LISA
ro | 0.080| 86.2  64.6 258.5 2.58 x 107
ro | 0.078| 84.0  63.0 252.0 2.52 x 107
ra | 0.077| 829 622 248.8 2.49 x 107
re | 0.076| 81.8  61.4 245.5 2.46 x 107
s_g| 0.060| 64.6  48.4 193.8 1.93 x 107
so | 0.080| 86.2  64.6 258.5 2.58 x 107
so | 0.078| 84.0  63.0 252.0 2.52 x 107
s4 | 0.076| 81.8 61.4 245.5 2.46 x 107
s¢ | 0.075| 80.8  60.6 242.3 2.42 x 107
ss | 0.073| 786  59.0 235.8 2.36 x 107
to | 0.084| 905  67.8 271.4 2.71 x 107
t1 0.083| 89.4  67.0 268.2 2.68 x 107
2 0.082| 88.3  66.2 264.9 2.65 x 107
ts | 0.081| 87.2  65.4 261.7 2.62 x 107
us | 0.080| 86.2  64.6 258.5 2.58 x 107
us | 0.080| 86.2  64.6 258.5 2.58 x 107
ug | 0.080| 86.2  64.6 258.5 2.58 x 107
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rate in the spin-dependent terms entering the phasing. The
gravitational-wave amplitudes, on the other hand, hava bee
computed according to ref. [48] (see al50![49]) to the high-
est PN order that is currently known for each of the spherical
harmonic modes that we use.

A phase-coherent construction of hybrid PN-NR wave-
forms is rather delicate, and has not yet been achievedéor th
higher spherical harmonic modes we use here (s€¢ [4, 5] for
some recent work in the case of nonspinning binaries). How-
ever, for the present purpose of computing the SNR and the ra-
diated energies, such a construction in the time domaintis no
necessary and all of the relevant work can be done much more
simply in the frequency domain. In practice, we Fourier $ran
form the PN and NR waveforms and “glue” them together
at a suitable “glueing” frequenay,i,e. Since the SNR de-
pends only on the amplitude of the waveforrmt, Bg. [3)], it
is not necessary to match the PN-waveform in the phase. This
greatly simplifies the process of waveform matching and ba-
sically reduces to a simple check of the amplitude matching
to address the error of the mismatch. Indeed, we have found
that without any parameter adjustment, the PN-waveform am-
plitudes match rather well with the inspiral part of the NR-
waveforms, and result in an error which is usually1.5%
and in the worst caser 4.0% for the binary configuration
to. The only care which is important to pay in the time-
domain analysis, and in order to limit the noise artifacts in
the Fourier-transformed amplitudes, is the use of a window-
ing function €.g.,a hyperbolic tangent) to smoothly blend the
waveform to zero before the initial burst of spurious radiat
and after the ringdown, in order to limit spurious oscilbaits
in the Fourier-transformed waveform. A representative ex-
ample is shown in Fid.]2, where we report the noise strain
for the Virgo and Advanced LIGO detectors, together with
the Fourier-transformed amplitude of the PN and NR wave-
form for the maximally spinning models. The waveform
is assumed to be observeddat= 0,¢ = 0 for a total mass
M = 200 Mg, and from a distancé = 100 Mpc. The glue-
ing frequency in this case is dljue = wglue/(27) = 27.14
Hz.

Since eaclt, m mode of the gravitational-wave field will
have a different initial frequency, we need to make sure that
they are all properly taken into account when determinirg th
glueing frequency, so that, at least in principle

wgluc Z I?ax(wini)fm . (2)

,m

In practice, the initial frequency of our highest mode=

4, m = 4, has an initial frequencfwini )44 = 2(Wini)22 - AS

a result, we select the glueing frequency according to the bi
nary configuration with the largest initial frequencg., the
binaryt,, and takevgiue = 2(wini)22 = 0.168/M. We also
measure how sensitive this choice is, by considering how the
results are affected when choosing insteagle + Aw, with

Aw < wgiye. More specifically, forAw = 0.01/M we find a
maximal difference in the computed SNR of 2.0% over

all configurations and all masses. Note that such a differ-
ence affects equally the maximum and averaged SNRs (see
Sect[ITD for a discussion on these two different measufes o
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and should be equal to the energy that has been radiated

107%0 g R N through gravitational waves during the simulatibnl [37]
= () (R) ] )
S Ih(f)] (PN) 4 ¢ +
S ___S(f) (adLIGO) - ES%:+ = % Z/ at’ (‘dg% + !Qexm’2> )
10-21 b N ———— S(f) (Virgo) | £m V0
B : Overall, we have found that for all binaries the differenee b
§ i 1 tweenk,.q andEfij;’+ is between~ 0.5% and~ 4.0% and
S a detailed comparison of the numerical values is reported in
T 107# ¢ E Table[. In SectCVB we will discuss an analytic fit to the
o F s 3 computed data that provides a simple-to-use measure of the
= - . amount of mass radiated during the inspiral, merger and ring
i 7 down as a function of the initial spins.
107%8 = \ =
E AN P
r SB \\\ i D. SNR, Horizon Distances and Event Rates
10-24 L1l Ll Following ref. [52], we define the SNR, for matched-

10 100 filtering searches as

£ 5\’ = (PP
p2 - <N>matched - 4~/(; Sh(f) df (5)

where h(f) is the Fourier transform of the time domain
gravitational-wave signdl(t), defined in the continuum as

FIG. 2: Noise strain for the Advanced LIGO and Virgo detestor
and the Fourier-transformed amplitude of the PN and NR veawef
atd = 0,¢ = 0 for a total massM = 200 M at a distance
d = 100 Mpc for the maximally spinning modeds. The glueing 5 oo o
frequency is affgiue = 27.14 Hz. hf) = / h(t)e*Q’”ftdt’ (6)

— 00

and S (f) is the noise power spectral density for a given de-
tector. Hereafter we will consider th,(f) for the ground-

. ) i based detectors LIGO, enhanced LIGO, advanced LIGO and
marginally the relative difference between SNRs computed bVirgo, as well as the space-bound LISA interferometer. [The

mcludmg modes up té = 2 and{ = 4, and also in this CaS€  associated noise power spectral densities are reporteg-in A
the differences are- 2.0%. Overall, therefore, the uncertain- pendixA ]

ties introduced by the choice af;,. are much smaller than
the typical error at which we report the SNRs.

the SNR). Furthermore, a change®b in wg,e affects only

Note that since the SNRI(5) depends on the angle from
the source to the detector, it is useful to introduce theeng|
averaged SNRp?), which can be computed straightforwardly
after decomposing the gravitational-wave signal in teris o
spherical harmonic modes. More specifically, using the or-
thonormality of the spin-weighted spherical harmonic basi
C. Radiated Energy sYem, the"angle-averaged’SNR

2

Since the total energy must be conserved, we canusethera-  _ (?) = 1 /dﬂ/df ‘sz b (f) —2Yem (2)
diated energy as an important tool to verify the accuracgeft "*"& — Fi=x Su(f) ’
gravitational-wave amplitude and thus the overall precisif @)
our calculations. More specifically, because it is strdight can be written as a simple sum of integrals of the absolute
ward to determine the initial and the final total mass, it&al squares of the Fourier-transformed modéegs( f)
straightforward to compare the difference in the two wité th -
radiated energy. In practice, we compute the initial mass of v = 1 Z/df |hem (£)? @
the system as\/;,; = M,,,,, while the final mass of the TE o Sn(f)
merger remnant/y,, is deduced from the properties of the ap- ) _ _
parent horizon within the isolated-horizon formalism astfir and hence it can be evaluated straightforwardly. For each bi
discussed in[[50] and then extensively investigated_in.[51]nary distance and mass, we have calculated bottntiaei-

The radiated energy is then simply given by the difference  MUM” SNR piax for an optimally oriented detectate., the
SNR for a detector oriented such that it measures only the

+ polarization of the gravitational-wave signal, and therave
ENB — M, .. — Mg, , (3)  aged SNR. Here the mass is always meant to beetthifted



total massj.e., (1 + z) Msource, Wherez is the redshift and  will be discussed in the next Section, will lead to the small-
Mource IS the mass at the source. For sources at small disest SNR for a given detector. We also assume that this binary
tances,i.e., less thanl00 Mpc, thenz < 0.024 and hence has a mass at the detector which is smaller than the optimal
M ~ Mg,uree to Within a few percent. Identical results would one. Let us now consider a binary with the same mass at the
have been obtained if we had consideredsthgolarization. detector but witha > —1; this binary will clearly lead to
It is worth noting that if the gravitational-wave signal is a larger SNR but because the masses at the detector are the

modeled simply through the dominaht 2 = m mode (orin  same, the mass of the binary with> —1 will be (because

our case via a superpositiér= 2 = +m) [73], the maximum  of the redshift) smaller at the source. As a result, its fwriz
SNR can be deduced from the average SNR after exploitingistance will be overestimated, and hence the event rate com
the properties of the spin-weighted spherical harmanic,, ing from (I2) only an upper bound. A similar argument for
and_,Y5_5, namely masses larger than the optimal one would instead lead to the

conclusion that the event rafeis only a lower bound.

Pmax = \/503\,?)([ =2,m= 2) (9)
5 IV. RESULTS
= ipgvg(é =2,m=+2). (10)

o ) ] In what follows we discuss the results obtained in terms of
However, such a relation is no longer true when includingthe SNR and how this is influenced by higher-order modes.
modes with/ > 2, and the relation between the maximum \ye also discuss the match between the waveforms from dif-

and the averaged value of the SNR can only be determinegrent binaries and an assessment of the accuracy of our re-
numerically. sults.

When computing the SNR, a reference distance needs to be
fixed and we have set such a distance taipe= 100 Mpc.
The results of the SNR &, across the spin diagram can then A. Horizon distances and SNRs
be recast in terms of afhorizon distance”, namely the dis-

tance at which a given binary system with redshifted mdss g yegyits of the analysis discussed above are nicely sum-

has an SNR equal to a threshold for detectability and which,i-ed in Fig[B, which shows the averaged and maximum
we chose to be = 8, as customary for ground-based detec-pqizon distancely; = dj(a, M) for some of the detec-
tors. The horizon distance is then simply defined as tors considered. As mentioned above, the horizon distance

p(d=d,) has been computed at a reference SPIR= 8.0, and is
4) Mpe.

dH_dp< .

The quantitydy is clearly equivalent to the SNR but has the
advantage to provide, at least for detectors not operating a 1 ~ 1

large SNRs, a simple estimate of the increase in the relative a= 5(‘11 +taz)- L= 5(‘“ +taz)-e., (13)
event rateR as

(11)  parametrized in terms of the total mass of the system (in so-
lar masses) and of the average dimensionless ggias' pro-
jected along the orbital angular momentdm

where = L/|L|, and the orbital plane has been chosen to
du 3 coincide with thgx, y) plane of our Cartesian coordinate sys-
R~ ( ) ' (12) tem. More specifically, the top left panel of Hig. 3 referste t
LIGO detector, the top right panel to the Virgo detector, levhi
wheredy ,=—1 is the horizon distance of the configuration the lower left and right panels refer to the advanced vession
with lowest SNRj.e.,which belongs to the extrapolated case of both detectors, respectively.
a = —1. Although simple, this formula requires a caveat. Ex- While quite self-explanatory, these panels deserve some
pression[(IR) is valid as an equality only for small horizastd comments. First, as expected, the maximum SNR is always
tances, namely those for which the redshift is negligiblesT larger than the average one but the difference between the
is because at large redshifts the observed masses woudd difftwo is not constant, changing both with the total dimension-
considerably from the masses at the source. In other wordtgss spiru and with the total mass/. Second, for any fixed
at large redshifts the horizon distances would be diffenent value ofa, the horizon distance (and hence the SNR) grows
only because of the spin, but also because the masses at thteeply to a maximum mass and then rapidly decreases to very
sources would be intrinsically different. This clearly iagts ~ small values of- O(1). Clearly, this reflects the existence of
the deduced event rate as definedid (12), which consideys ona sweet-spot in the sensitivity curve of all detectors. @hir
the contributions coming from the spin. Hence, for large red for any value ofa, the maximum horizon distance/SNR also
shifts the event rat& defined here serves only as a lower limit marks the “optimal mass” for the binay/,.;, namely the
for masses larger than the optimal one and, vice versa, as amass of the binary whose inspiral and merger is optimally
upper bound for masses smaller than the optimal. tuned with the given detector and hence can be seen from
To fix the ideas, let us consider a concrete example. Let uirther away. Note that the differences between the maxi-
assume that we have calculated the horizon distance for a binum and average SNR are largest in the neighborhood of the
nary witha = —1 which, as can be deduced from Hig. 4 and optimal mass. Fourth, the configuration with spins parallel

dH.,azfl
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FIG. 3: Averaged and maximum horizon distante = dx(a, M) for the LIGO detector (top left panel), for the Virgo detecftop right
panel), and for the advanced versions of both detectorsofndeft and right panels, respectively). The horizon diseahas been computed
at a reference SNR = 8.0.

and aligned to the orbital angular momentum are genericallpf the Universe that is increased by a factoro5000/3000,
“louder” than those with spins parallel but antialignediwiie  respectively. Note that if we assume an Hubble radius of
orbital angular momentum, with the binaries having- +1 ~ 4.1 Gpc, both detectors would effectively detect binaries
being the “loudest” and “quietest”, respectively; thisssen-  within a large range of masses.§.,60 < M /Mg < 500 for
tially the answer to questid(i) in the Introduction[[74]. Fifth, —advanced LIGO) across the whole Universe.

in the cases of the LIGO and advanced Virgo detectors the Figure[% shows similar information but for the planned
horizon distance is essentially zero at cut-off massestwhic| |SA mission. Since the horizon distance can well exceed
are~ 900 Mg and~ 3000 Mg, respectively. Sixth, for any the whole Hubble horizon, the figure reports the averaged and
fixed value of the total mass, the SNR grows witand, aswe  maximum SNRy = p(a, M) for sources atl = 6.4 Gpc (z =

will discuss later on, this growth is very well describediwit 1) Many of the considerations made above hold also for the
a polynomial ofith order €f. discussion in Sedl_VIA). This ||SA detector, and it is interesting to note that for suffitlg

is shown more clearly in Fidll 4, which reports the maximumhigh and aligned spins.¢.,a > 0.8), the SNR is> O(10)

SNR pmax for the LIGO detector and for a given set of massesa|ready with binaries having massesew x 103 M.

at a distance = 100 Mpc. Note that the growth géma. with Finally, the most salient information of Figd. 3 ddd 5 is col-
a becomes steeper for masses > 200 Mo, for Wh'Ch. the  acted in TabléTll which reports the properties of the “epti
NR-part of t.he waveform and hence the pIunge and rlnngW"rlnal” aligned binaries for the different detectors. Moreape
phase dominates. In these cases, the SNR is more then dquz)y the Table reports in its different rows the optimata

bled betweeru = —1 anda = +1. Finally, when going  jisned spiny, the optimal total mass in solar masses, the opti-
from the present LIGO/Virgo detectors to their advanced ver maximumy and average... SNRs, the optimal horizon
avg ’

sions, tge average horizon distances go fro00/800 Mpc  yigrancar,, (expressed itMpc and withH ~! being the Hub-
to ~ 10%/1.2 x 10% Mpc, thus with an observationablume 0 14 iys), the optimal relative event rateand the glueing
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FIG. 4: Maximum SNRpmax = p(a, M) for the LIGO detector
for a given set of masses at a distante= 100 Mpc. Note that
the growth ofpmax With a is very well described with a low-order
polynomial which is ofith order for the optimal massf( discussion

in Sect[VA). Note also that the dependenceadrecomes stronger
for masses\ > 200 M, for which the NR-part of the waveform
and hence the plunge and ringdown phase dominate. In thess,ca

the SNR is more then doubled betwees- —1 anda = +1.

TABLE III: Properties of the “optimal” aligned binaries fdine dif-
ferent detectors. Shown in the different rows are the optiotal
aligned spina, the optimal total mass in solar masses, the optimal
maximum pmax and averagea.v, SNRs, the optimal horizon dis-
tancedy (expressed idMpc and where=H ! is the Hubble radius),
the lower bound for the optimal relative event r&teand the glueing
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FIG. 5: Averaged and maximum SNR= p(a, M) for the planned
LISA mission and for sources dt= 6.4 Gpc (z = 1).

B. Influence of higher¢-modes

As discussed in Sedi1IID, it is interesting to consider the
impact that higher-order modes have on the SNR of equal-
mass aligned binaries and some representative examples of
this impact is shown in Fig.]6. The left panel of this figure,
in particular shows the maximum SNR, .. as a function of
the mass for the highly spinning modgland for the present
detectors LIGO and Virgo. Different lines refer to the SNRs
computed using only thé = 2 multipoles (continuous line),
or up to the = 4 multipoles (dashed line). Clearly, the contri-
bution of the higher modes is most important near the optimal
mass (e., M ~ 200 Mg, for LIGO and M ~ 400 M, for
Virgo) but this is also non-negligible for larger masseseven
it can produce an increase ©f8% in SNR in a detector such
as Virgo.

frequency/fzue for the optimal binary. The masses have been sam- The right panel of Figl16, on the other hand, shows the
pled with an accuracy df.5 M, for the ground-based detectors and ratio between maximum and averaged SNR as a function of

of 2.5 x 10* M, for LISA.

LIGO |eLIGO|AdLIGO| Virgo| AdVirgo LISA
a 0.8 0.8 0.8 0.8 0.8 0.8
Mopt (Mg)| 197| 180 290| 395 390|5.35 x 10°
Pmax 87| 175 1667| 118  1591|2.91 x 106
Pave 52| 104 991| 70 944(1.77 x 10°
dr (Mpc) | 1091| 2190 > cH ™ '| 1476|> cH™'| >cH™ !
R 18 17 16| 16 17 26
fewe (Hz) |27.48| 30.51| 18.71(13.74| 13.91|1.0 x 107

the total projected spim for a binary of M = 200 M
(5.35 x 105 M) and the LIGO (LISA) detector. As men-
tioned in SectII[D, this ratio is not expressed by a simple
algebraic expressior{ equation[(®)], but needs to be deter-
mined numerically. Interestingly, this ratio is not comgthut
increases by 10% for larger total projected spins, underlin-
ing the importance of higher-order contributions as thgahi
spins increase. Overall, therefore, Eilg 6 provides the answ
to questior(iii) in the Introduction.

C. Match between different models

A quantity providing a wealth of information is the match

frequencyf,iu. for the optimal binary. The masses have beerbetween the amplitudes of the waveforms from two different
sampled with an accuracy 2f5 M, for the ground-based de- binaries, so as to quantify the differences in the gravitei-
tectors and 02.5 x 10* M, for LISA.

wave signal relative to some reference models. The match
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FIG. 6: Left panel:maximum SNRomax @s a function of the mass for the highly spinning mogeénd for the present detectors LIGO and
Virgo. Different lines refer to the SNRs computed using athlg ¢ = 2 multipoles (continuous line), or up to tile= 4 multipoles (dashed
line). Right panel:ratio between maximum and averaged SN&s a function of the sping, = a» for M = 200 Mg, (M = 3.53 x 10° M)

by including modes up t6 = 2 and? = 4 for LIGO (LISA). In contrast to the casé= 2, the{ = 4-curve is not constant but depends on the
initial spinsaz, as

between two waveform, (t) andhq(¢) (or a template and a minimizing over the phase of the other
waveform) can be calculated via the weighted scalar product

in frequency space between two given waveforms Mininimax = maxmin I%%X{O[hlv hal} 17)
- h(f)h3(f) and thus represents a “worst-case” scenario since it gives
{afhz) = 4%/0 af Su(f) (14) lower matches although one is maximizing over the template

- . ) phase. More details on the maximization procedure can be
whereh, (f) is the power spectral density &fi(¢), the as-  found in [53,54]. Note that all the matches computed here-

terisk indicates a complex conjugate, afigl f) is the noise  after refer to the numerical-relativity part of the wavefor
power spectral density of a given detector. The overlapas th gny.

simply given by the normalized scalar product A sensible way, if not the most sensible way, of evaluating
(ha|ha) expressions(16) and_{117) is to use the binagythe nonspin-
Olhi,he] = —————. (15)  ning binary, as a reference and to compute the overlap wath th
V{1 lhi)(halha) binaries at representative locations in the spin diageag,at

Two parameters need to be taken into account when confb® corners fos — s, so — us, so — s—g, Or along the main
puting the overlap. The first one is the “time of arrivaf ~ diagonale.g.,s s — ss. In this way we can assess whether
corresponding to an offset in the Fourier-transform of ige s  the waveform produced by a nonspinning binary can be used
nalexp [iw(t — t5)]. The second one is the “initial phase”  © detect also spinning binaries and how much the overlap is
of the orbital motion when it enters the detector band. decreased in this case. _ _

For both of these parameters the overlap should be maxi- This is shown in FigL17, which reports the best and min-
mized. We have considered two possible ways of doing thisT@x matches as a function of mass for a waveform contain-
The first approach involves theestmatch, which gives an ing only the/ = 2,m = 2 contribution and refers to the

upper bound by maximizing over both of the phases of eachk!/GO detector. Different lines s_how _the match computed be-
waveform tweensg and other representative binaries, and show the re-

markable similarity between the waveforms of binaries hav-
Myest = max max max{O[hq, ha|} . (16) ing a zero total spin. This is shown by thg — ug match,
ta Dy [ . . . .
which is essentially very close tofor all the masses consid-
The second way, instead, involves théimaxmatch, and is ered €f. also Tabld1V). This result extends to all the other
obtained by maximizing over the phase of one waveform butmeasured quantities, such as the radiated energy or angular
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FIG. 7: Best and minmax match as a function of mass for awawefo FIG. 8: Best match as a function of the total projected spiior
containing only the = 2, m = 2 contribution and referring to the a waveform containing only thé = 2, m = 2 contribution. The
LIGO detector. Very similar behaviors can be shown also fier t top/lower panels refers to binary with a total ma8e0(/400 M)
other detectors. which are close to the optimal ones for the LIGO/Virgo or athed
detectors, respectively. In both panels the dotted linevstibe mini-
mum best match)(965) needed for a detection. While the data have

) . L . been computed for the LIGO detector, very similar behawars be
momentum, and is not particularly surprising. Indeed, iSwa shown also for the other detectors.

already discussed by [54], although the investigation at th
case was restricted to what is here thsequence. In addi-

tion, the equivalence between nonspinning binaries anakbin along the main diagonal of the spin diagram, for s_g, al-

ries with equal and opposite spins has been exploited in thgough even in this rather extreme case the differences tend
derivation of ressmns for the final spin presented in-a s&o become smaller for smaller masses. Overall, this result
ries of works [14/ 15, 16, 17]. The results of FIg. 7 and Ta-ynderlines that even simple waveforms, such as those rela-
ble[[Vl are therefore a simple example, although probably nofive to nonspinning binaries, will be effective enough topr

the only possible one, of a well defined region of the space ofiide a detection for most configurations of equal-mass and
initial configurationsie.,those of binaries with equal masses aligned/antialigned binaries.

and opposite spins) which can be mapped to an almost degen-p_gifferent way to assess “how different” the waveforms
erate regioni(e., essentially to a single point) in the space of 4 across all of the equal-mass aligned/antialigned spins
templates. This is the answer to questfd in the Introduc-  figyrations considered here is nicely summarized in Eig. 8,
tion and clearly represents a serious obstacle towardspro \yhich shows the best match as a function of the total prajecte
estimate of physical parameters of the binaries that mag-be ' spina for waveforms containing only the= 2,m = 2 con-

moved, at least in part, only if the waveform is measured withyip iion and referring to the LIGO detector. The top panel,
a sufficiently high SNR. A proper discussion of this problem,in particular, refers to binary with a total mass 210 My,
as well as the determmatlon of other degenerate patchBe in ti, 4t is close to the optimal one for the LIGO/Virgo detectors
space of templates, will be the subject of future work. while the bottom panel refers to a binary with mase M,

An equally remarkable result, presented in [Fiy. 7, is thaand close to the optimal one for the advanced LIGO/Virgo
the overlap is also very high between the nonspinning binargetectors ¢f. Table[IM). Besides the remarkably smooth be-
and the binary with equal and antialigned spigg,— s_s; haviour of My across all the values af considered, it is
also in this case, in fact, the best matchMi,.s¢ = 0.9 for clear that the waveform from a nonspinning binary can be ex-
the range of masses that is relevant here. Slightly smaikér a tremely useful across thehole spin diagram and yield very
decreasing with increasing masses are the best matches colarge overlaps even for binaries with very high spins. Irhbot
puted when comparing the nonspinning binary with the binarypanels, in fact, the dotted line shows the minimum best match
of parallel and aligned spins, so th&t},.s; ~ 0.8, but only  (Myesy = 0.965) needed for a detectioﬂSS]. This result is
for very large masses. The waveforms appear clearly differe reassuring in light of the fact that most of the searchesén th
(i.e., with Myt < 0.6) only when comparing the binaries detector data are made using phenomenological waveforms

~
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based on nonspinning binaries.

For completeness, the results presented in[Big. 7 (as well ! e PSP S
as those in Fig.]9) are also reported in Tdblé IV, where the FA
different columns showM e anNd M inmax and for wave- -
forms computed either using only tlie= 2, m = 2 contri-
bution (third and fourth columns), only the= 3,m = 2 < i
contribution (fifth and sixth columns), or all contribut®op - 098 - © -
to ¢ = 4 (last two columns). Interestingly, the matches amongZ> )
the high-order mode.g., (s0)¢=3,m=2 — (us)r=3,m=2, 1S
systematically higher than those of the lower ones and re- .
mains true even for higher modes beyohd= 3,m = 2,
which however, we do not report here. This indicates that in
order to do high-precision parameter estimation by inclgdi g 0.96 -
higher modes it is also important that these modes are accu=
rately resolved, so that they can be clearly distinguisiheoh f
one another. r

When considering the waveform matches for the complete i minmax, (low, med) |
waveform by including modes up tb= 4 we generally ex-
pect that the match degrades for angles other thar) = ¢.

For example, the degeneracy along the diagonal shouid

—as break, since these configurations asymmetrically emit ra-
diation leading to recoil velocities. However, this asyntime
can only be carried in other than the leading ortlerm = 2
mode. Hence the degeneracy must break. For this reason Wi#G. 9: As in Fig[8 but now different lines represent the rhatc
have computed the sky-averaged match of the entire wavesbtained when comparing the numerical waveforms of therpina
form including modes up té = 4 as shown in the last two computed at different resolutions. The matches are corddatehe
columns of TablETV. In accordance to what is reporte@w [54]LIGO detector, but very similar behaviors can be shown absdtfe
we see a small break of degeneracy at least in the minimaxher detectors.

match. The best match, however, is still degenerate within o

numerical accuracy. :
, . can be shown also for higher modes or for the other detectors.
Finally, we note that although F'®.7 f'ﬂd 8 ShO\.N data com- Overall, the results reported in Figd. 9 and in TdbI& IV show
puted for the LIGO detector, very similar behaviors can bey .. Mopost [Az1, Aws] > Moeetm (b1, hol

shown also for the other detectors. i.e., that the differences we measure in the overlaps among
two different waveforms, andhs are always larger than the
) differences we are able to measure at two different resolu-
D.  Accuracy of NR waveform amplitudes tions Az; and Az,. In other words, the differences in the
waveforms across the spin diagram are always larger than our
A reasonable concern that can be raised when looking theumerical errors, even along the degenerasequence (of
very high matches between the waveforms indkhgequence course, as we have a convergent numerical code, the match
is that these are simply the result of insufficient resotutio between medium and low resolution is worse than the match
In other words, the waveforms may appear similar simplybetween medium and high resolution). It is also worth men-
because our resolution is not sufficient to pick-up the diffe tioning that as long as the dominaht= 2,m = 2 mode is
ences. To address this concern we have computed the overlapnsidered, the differences in the matches are well withén t
among the waveforms obtained at three different resolstionmargin of error for numerical-relativity simulations ofaek
and for a representative binary with nonzero spirss, rg. hole binaries. A recent work has in fact estimated that the
Clearly, a low match in this case would be an indication thatifferences in the waveforms produced by distinct codes is
our results are very sensitive to the numerical resolutitth a2 M ismaten = 1 — M =~ 10~* for the last~ 10000 of the
hence the conclusions drawn on the degeneracy of the spademinant mode of non-spinning equal mass coalescéntce [56].
of templates would be incorrect. Since the next higher mode= 3, m = 2 starts to suffer from
The results of this validation are presented in Eilg. 9 and areumerical noise, it does not yield the same high agreement,
reported in the last eight rows of Talblel V. More specifically and the differences between best and minimax match show a
shown with different lines in Fid.]9 are the matches obtainedarger deviation.
when comparing the numerical waveforms of the binayy As a final comment on the accuracy of our waveforms, we
computed at low resolutiorNz/M = 0.024) and medium note that the error made by using waveforms extracted at a
resolution Ax/M = 0.020, which is also the standard one), finite radius, and not extrapolated at spatial infinity is lwel
as well as at a medium and high resolutidn/M = 0.018).  within the error budget of our estimates. We have validated
The matches are computed considering onlytke2, m = 2 this by comparing the waveforms extracted at a finite radius
mode and for the LIGO detector, but very similar behaviorsagainst the waveforms computed at future null infinity, via a

minmax

minmax, (med, high) B

094 ‘ I | ‘ I I | ‘ I ‘ I I | ‘
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TABLE IV: Best and minmax matches as computed for the LIGGedker for binaries with different spins in the spin diagraBifferent
columns showM st and Mminmax for waveforms computed either using only the= 2, m = 2 contribution (third and fourth columns),
only the? = 3, m = 2 contribution (fifth and sixth columns), or the sky-averagedtributions of all modes up 6= 4 (last two columns).
Finally the last eight rows show the matches at differentitg®ns {.e., Az /M = 0.024, 0.020, 0.018) for the binaryrg.

M/Mg Mpest M minmax Muest Mminmax Muest M minmax
onlyl=2,m=2fonlyl=2m=2|onlyl¢ =3,m = 2|only¢ =3, m = 2|avg. up to/ = 4|avg. up to/ =4

S50 — S8 100 0.87182 0.86914 0.87802 0.85061 0.86337 0.83272
200 0.79987 0.79642 0.82533 0.80236 0.80070 0.75679

300 0.74394 0.74026 0.82570 0.78819 0.74785 0.71139

400 0.71981 0.71568 0.84074 0.81285 0.72345 0.69019

50 — Us 100 0.99926 0.99914 0.99497 0.97411 0.99673 0.95443
200 0.99928 0.99906 0.99372 0.95193 0.99483 0.95919

300 0.99923 0.99870 0.99189 0.93888 0.99251 0.96105

400 0.99919 0.99822 0.99147 0.93493 0.99110 0.96054

50 — S—8 100 0.93942 0.93907 0.95717 0.94843 0.93695 0.92143
200 0.90746 0.90536 0.95647 0.94521 0.89646 0.88041

300 0.89491 0.89197 0.95015 0.93814 0.87303 0.84960

400 0.89369 0.89065 0.94806 0.93550 0.85492 0.82103

5_8 — S8 100 0.78948 0.78493 0.87041 0.85222 0.78310 0.74895
200 0.63309 0.62703 0.90722 0.88543 0.63456 0.59426

300 0.56934 0.56008 0.90322 0.88869 0.56941 0.52170

400 0.54235 0.53960 0.91199 0.89848 0.55470 0.49338

S_g — us 100 0.94250 0.94187 0.96299 0.94669 0.93897 0.89017
200 0.91444 0.91229 0.96316 0.93068 0.90315 0.85958

300 0.90188 0.89885 0.95486 0.91256 0.87846 0.83428

400 0.89772 0.89492 0.95132 0.90583 0.85870 0.80907

S8 — ug 100 0.87127 0.86817 0.87656 0.84229 0.85866 0.80969
200 0.79750 0.79477 0.83582 0.81476 0.79074 0.73526

300 0.74063 0.73884 0.83897 0.80378 0.73616 0.68774

400 0.71798 0.71343 0.84955 0.81925 0.71203 0.66611

) 100 0.99979 0.99970 0.99495 0.98812 0.99855 0.99463
(0.024,0.020)| 200 0.99963 0.99929 0.99133 0.97100 0.99633 0.98800
300 0.99943 0.99894 0.98752 0.95775 0.99379 0.98152

400 0.99924 0.99868 0.98630 0.95317 0.99209 0.97683

) 100 0.99990 0.99989 0.99873 0.99299 0.99881 0.99639
(0.020,0.018)| 200 0.99980 0.99970 0.99806 0.98074 0.99705 0.98952
300 0.99956 0.99924 0.99707 0.97238 0.99497 0.98070

400 0.99935 0.99866 0.99666 0.97017 0.99320 0.97429

newly developed Cauchy-characteristic cdde [57]. In theeca mass and the energy radiated in gravitational waves.
of the nonspinning configuratio we have found an error in

the calculated SNR of less thar0% (details on this compar-

ison can be found in AppendiX B). A. SNR

As discussed in Sedi 1D, the maximum SNR depends
on several factors, most notably on the two initial sping, th
total mass of the system and, although more weakly, on the

In what follows we provide some simple analytic represen-number of multipoles included in the waveforms. The result-
tation of most of the results presented in the previous 8esti ing functional dependencies when one degree of freedom is
and, in particular, we give a brief discussion of fitting ee@r  suppressed and the SNRs are presented in terms of the total
sions that can be derived to express the SNR for an optimadrojected spin are shown in Fi§i$[3, 5 and are clearly too cum-

V. FITTING FORMULAS
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300 TABLE V: Fitting coefficients for the maximum SNR computed fo

advLIGO /7.0 i the optimal masg<f. eq. [18)]. The different rows refer to the various
aavLia/ ey ) detectors and have been computed including all modes fip-td.
advVirgo /7.0

eLIGO
LIGO
Virgo

250

detector ko k1 ko k3 ka
LIGO 50.76 27.11 13.43 8.58 4.63
eLIGO 102.45 53.63 25.33 17.67 11.26
AdLIGO 1020.42 492.25 243.60 153.84 46.99
Virgo 71.86 35.23 17.140 10.92 3.789
AdVirgo 968.08 481.52 236.45 140.69 3791

> O » ® =B

a = —1 anda = 1 will translate into an increase of a factor
~ 27 in the event rate. It is therefore likely that many of the
binaries observed will have high spins and aligned with the o
bital angular momentum. This will be particularly true ireth
case of LISA if the prediction that the spins of supermassive
‘ black holes are aligned with the orbital angular momentum
a will hold [L].

I
—
|
@]
w
(@]
o
@)l
—

B. Radiated Energy
FIG. 10: Different symbols show the numerically computetlea

of pmax(a, Mopt) for the different detectors and represent therefore . . .
the cross section along the optimal mass of Fiys. Tand 5. tKate While the SNR is effectively a measure of the amount of

the SNR for the advanced detectors have been dividetitbynake ~ €N€rgy released during the inspiral, it also incorporates
them fit onto the same scale. mation on the properties of the detectors and is not thezefor

an absolute measure of the efficiency of the gravitatioreaten
emission process. This information can have a number of im-
bersome to be described analytically (although still gde$i  portant astrophysical applications, and in particulaait te
However, most of the complex functional dependence camised to study the effect the merger has on the dynamics of
still be captured when concentrating on the best case sognarthe circumbinary disk accreting onto the binary when this is
and hence on the SNRs relative to the optimal nddss.. The  massive (se@S] for the first suggestion and [59] for a recen
behaviour of the SNR in this case is shown in Eid. 10, wherehonlinear study).
the different symbols show the numerically computed values |n this Section we present a simple formula to compute
of pmax(a, Mopt) for the different detectors. Stated differ- the amount of energy released and express it only in terms of
ently, Fig.[10 represents the cross section along the optimahe initial spins. Our formula is restricted to aligned bira
mass of Figd.]3 arld 5 (note that the SNR for the advanced demd is therefore not as generic as the one recently presented
tectors have been divided iyto make them fit onto the same in [I@], which however also requires the determination of a
scale). larger set of coefficients, some of which have uncertaimies
Clearly, the behaviour of the SNR in this case is sufficiently~ 100%. As we will show below, the two expressions yield
simple that it can be represented with a simple quartic polyresults in reasonably good agreement, at least in the part of

nomial of the type the parameter space we investigate.
4 In practice, the expression for the radiated enefgy, is
n derived by combining a fit to the numerical data for the bina-
max ;£§41M:Mo = kn 5 18 . s . .
pmax(a pt) nZ:o “ (18) ries at an initial and finite separatidn = 8 M [75] (we refer

to this energy as t&\1}), with the estimate of the energy re-

rad

whose coefficients,, are reported in TablglV for the five de- leased from the binary when it goes from an infinite sepamatio

tectors considered. down toD (we refer to this energy aBLY), i.e.,
These results address therefore quediprformulated in
the Introduction. More specifically, when considering tie o Fraq = ENB + EPN = Mapy — Mg, + EEY  (19)

timal mass, the ratio of the SNRs for maximally antialigned

spinning binaries to maximally and aligned spinning biesyi where Mapy is the initial ADM mass as measured at spa-
i.e., pmax(a = 1)/pmax(a = —1) is ~ 3 for both the LIGO tial infinity of the binary with separatio, and Mz, the

and Virgo detectors. This ratio is also preserved when conChristodoulou mass of the final black hdlel[76]. For the fit of
sidering the advanced LIGO and Virgo detectors. Because thiie radiated energy during the numerical evolutibpy, we
event rate scales like the cube of the SNR¢xpressiong{9)- use the same symmetry arguments first made in [14] and then
(@2)], an increase of a facter 3 in the SNR of binaries with  successfully used if [1L 17] to write a simple exprassio
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which is a Taylor expansion in terms of the initial spins where

Eg{i{(q = 11a11a2) 5 o 4.826
M _p0+pl(a1 +a2)+P2(a1—|—a2) . pO_W’

(20) Of course these numbers are specific to equal-mass binaries
Fitting then the numerical data we obtain the following eslu and refer to a situation in which the match between the PN

_ 0485

1559
- P2= 00 -

— 25
P1 100 ) ( )

for the coefficients evolution and the one in the strong-field regime is made at
3.606 + 0.0271 1.493 + 0.0260 a specific separation dd = 8 M. However, we expect the
Po= "0 PL= "0 results to dgp_end_ only weakly on this matching separation
0.489 + 0.0254 (as long as it is within a PN regime) and hence that expres-
pp=—. (21) sions [(24) and(25) are generically valid at the precision we
100 are considering them here, namehs%.
where the reduced chi-squaredyi$,, = 0.008, and where Using expressior (24) a number of quantitative considera-

the largest error is in the 2nd-order coefficient but thisriyo  tions are possible. Firstly, the largest energy is cleanyt-e
~ 5%. Expressed in this way, the different coefficieris] (21)ted by equal-mass, maximally spinning binaries with spins
can then be interpreted as the nonspinning orbital cortioibu  parallel and aligned with the orbital angular momentum at
to the energy los§, which is the largest and of 3.6%),the  is E..q(a = 1)/M = 9.9%. With the exclusion of the as-
spin-orbit contribution ;, which is < 3.0%), and the spin- trophysically unlikely head-on collision of two black hele
spin contribution g2, which is < 2.0%). The relative error moving near the speed of light (in which caBg,q < 14 +
between the numerically computed valuerii} and the fit- 3% [61]), these binaries are therefore among the most efficient
ted one is reported in the last column of Tdble 1. sources of energy in the Universe. Secondly, equal-mass non
The PN expression for the energy radiated by the binargpinning binaries lose a considerable fraction of theirswées
when going from an infinite separation down to a finite oneradiation, withE,,q(a = 0)/M = 4.8%, while maximally
r = d, depends on the total mass of the binary, the mass ratispinning binaries with spins parallel and antialigned ifite
and the spin componentse., ELN = EEN(r, M,v,a1,a2),  orbital angular momentum havg,q(a = —1)/M = 3.7%.
which is the generalization to unequal masses of the energy Note that expressiofi (P4) is not a strictly monotonic func-
expression used in the definition of the TaylorT1 approxitnantion of the total spin and has a local minimumaat= ay =
in ref. [38]. However, following the spirit of deriving a sjsle ~ —p; /(4552) ~ —0.8 rather than at;; = a; = —1, and yields
expression that is as compact as possible and exploiting the,,q(a = —0.79)/M = 3.6% (cf. Fig.[11). Although rather
fact that, for equal-mass binaries, the PN radiated enBfgy  shallow, we do not expect such a local minimum. We there-
follows the same series expansion used FQf't, namely a  fore interpret it as an artifact of the numerical error of our
polynomial of the total spin, in this case, settit= 1 = ¢  calculations (the difference between the energy radiated a

we obtain a1 = as = —landthatat; = as = —0.8is~ 2% and hence
EPN(ay, as) compatible with our pvergll error). Such a Io_cal minimum can
“radd 0 7R Egﬁ,o be removed by adding higher-order terms in express$ioh (20)
M PN PN ) (e.g.,up to 4th order im; +a2) but these improvements are so
+Eraq1(a1 + a2) + Erg p(a1 + az2)”, small that they do not justify the use of a more cumbersome

(22)  expression. A comparison between the numerical values and
the fitting expressioi 24 is shown in FIg]11, where crosses

where the coefficients fab = 8 M are given by and squares represent the' and E,.q respectively, along

PN 6401 1.220 the diagonal of the spin-diagraiing.,for a; = az), while the
Erad,0 = 594983 100 continuous line refers to our fitting expression. Note thahs

PN 985 0.0664 a line is a 1-dimensional cut of a 2-dimensional surface and
Eraan = 10485762 = 100 ° hence it is not expected to exactly fit all points.

. 1 0.00305 As mentioned above, Lousto and collaborators have re-
Erad2 = ~ 39768 ~ — 100 (23)  cently proposed a more general formula that should account

for the radiated energy in all of the relevant space of param-
A rapid inspection of the coefficients (23) is sufficient to ap eters, namely for binaries with arbitrary mass ratio, spin o
preciate that the PN orbital contribution is only 33%, the  entation and sizé [60]. Restricting their expression tosiie-
one of the strong-field regime, but also that the spin-rdlate cific subset of binaries considered here corresponds tagett
PN contributions are mostly negligible, being at mostof% in their expression (2)Es = Eg = 0, v = 1/4andq = 1.

as produced in the last orbits. The resulting expression is then

We can now combine expressiofs](20)}}(21) with expres-
sions [22){(2B) and estimate that for equal-mass binarigs w ERIT 1 1 1
aligned spins the energy radiated via gravitational waras f M ZEISCO + 1_6E2 + @E3

infinity is 1
Y + & [Es(a1 + a2) + Ea(ar + a2)?

Era ai, a ~ ~ ~
Ermalor,00) _ o+ Pr(ar + ag) + palar + a2)®,  (24) + Ep(ar —a)?], (26)

M
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FIG. 11: Energy radiated during the numerical calculatioi’
(crosses), the total radiated enefy.qa = EXL + ETY (squares)
along the diagonal of the spin diagraie,,for a; = a2. Shown as a
continuous line is the analytic expressions given here fREWwhile
the dashed line is the one suggested in fef. [60] (RIT fit).eNhat
the lines represent 1-dimensional cuts of 2-dimensiondhses and
hence are not expected to fit well all points. Finally, intéchwith a
dotted line is the prediction for the radiated energy confingn the
point-particle approach df [62] and refinedin/[63].

where the fitting coefficients have been determined tBhe-
0.341 £+ 0.014, E3 = 0.522 4+ 0.062, Es = 0.673 £ 0.035,
Es=-0.0144+0.021, Ep = —0.26 £ 0.44 [@], and where

V8 0.103803
Ersco = <1—? +T

(a1 + az) (a1 — az)?. (27)

1 5
+—— +—
483 6481/2
After a bit of algebra we can rewrite (27) as

ERIT (41, a9 o . _
L) = q0+q1(a1—|—a2)+q2(a1—|—a2)2+q3(a1—a2)2 )

M
(28)
where now
o1 V8  0.103803 Ey E; 5.025
Go=~1-—+—— —
4 3 4 16 64 100
o1 N Es 1352
M= T02y3 T 64 100
__Ea 00219
©=61 =" T100
_ 5 E 0.270
s Do (29)

25922 64 100
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Comparing[(2¥)E(25) witH (28)-(29) is now straightforward
and shows that: the reduced expression from [60] has a sec-
ond order contributior- (a; — az)?, which is absent in our
expression. The remaining coefficients are rather similér b
not identical. This comparison is summarized in Figl 11,
where the dashed line corresponds to the fitting proposed in
ref. [60]. Note that the maximum efficiency for maximally
spinning black holes predicted by expression (28)-i8%,
but our estimate is larger arnd 10%. Not reported in Fig 11
is the prediction made in ref. [64], which is linear in theatiot
spin and very close to that coming from{28).

While the two expressions provide very similar estimates
for —0.5 < a1 = az < 0.4, they also have predictions dif-
fering by more than- 20% for highly spinning binaries. Be-
cause both expressions come as a result of a number of sim-
plifications and assumptions, it is not easy to judge whiah on
is the most accurate one, if any. It is useful to bear in mind,
however, that expressioris {2#)-(25) have been obtained fro
a “controlled” set of simulations with small truncation s
and therefore have coefficients with error-bars of the oofler
5%. Expressiond (28J-(29), on the other hand, because com-
ing from more extended formulas and thus fitting a wider set
of different simulations across many groups, have erros-ba
that are intrinsically larger, as high 480%. In view of this,
and of the fact that the coefficients are constant, the simula
tions carried out here could be used for a new estimate of the
free coefficientstly, Fs, Eg, and E4 in @8) [77]. Finally,
indicated with a dotted line in Fig._11 is the prediction for
the radiated energy coming from the point-particle appnoac
of [64] and refined in[[63].

Simulations involving aligned binaries with unequal masse
will help to settle this issue and provide an extension to our
expression[(24). This will be the subject of future work.

VI. CONCLUSIONS

We have considered in detail the issue of the detectability
of binary system of black holes having equal masses and spins
that are aligned with the orbital angular momentum. Because
these configurations do not exhibit precession effectsy the
represent a natural ground to start detailed studies ofrthe i
fluence of strong-field spin effects on gravitational wave ob
servations of coalescing binaries. Furthermore, suclesst
are far from being unrealistic and may be the preferred end-
state of the inspiral of generic supermassive binary blaalle-
systems. In view of this, we have computed the inspiral and
merger of a large set of binary systems of equal-mass black
holes with spins parallel to the orbital angular momentuin bu
otherwise arbitrary. Our attention is particularly focdsm
the gravitational-wave emission so as to provide simple an-
swers to basic questions such as what are the “loudest” and
“quietest” configurations and what is the difference in SNR
between the two.

Overall we find that the SNR ratio increases with the pro-
jection of the total black hole spin in the direction of the or
bital momentum. In addition, equal-spin binaries with max-
imum spin aligned with the orbital angular momentum are
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more than “three times as loud” as the corresponding binaSathyaprakash and B. Schutz for useful discussions and com-
ries with anti-aligned spins, thus corresponding to evatdgs ments. Mathematica codes for post-Newtonian waveforms
up to 30 times larger. On average these considerations arand waveform analysis have been developed together with
only weakly dependent on the detectors, or on the number dflark Hannam. We thank E. Cuoco, S. Hild and M. Pun-
harmonics considered in constructing the signal. turo for providing the sensitivity curve of the advancedgdir

We have also investigated whether these binaries can leatktector. SH and DP have been supported as VESF fel-
to a degenerate patch in the space of templates. We do this bgws of the European Gravitational Observatory (EGO). Addi
computing the mismatch between the different spinning contional support comes from the DAAD grant D/07/13385, grant
figurations. Within our numerical accuracy we have foundFPA-2007-60220 from the Ministerio de Educacion y Ciencia
that binaries with opposite spirfs, = —S, cannot be distin-  (Spain), and by DFG grant SFB/Transregio 7 “Gravitational
guished, whereas binaries with spfh = S, have clearly Wave Astronomy”. The computations were performed at the
distinct gravitational-wave emissions. This result, viknieas ~ AEI, on the LONI network wwv. | oni . or g), at LRZ Mu-
already partly discussed in the pdst|[54], may represent a saich, and the Teragrid (allocation TG-MCA02N014).
rious obstacle towards a proper estimate of the physical pa-
rameters of binaries and will probably be removed only if the
SNR is sulfficiently high.

Finally, we have derived a simple expression for the energy
radiated in gravitational waves, and find that the binarles a
ways have efficiencie&,.q/M 2 3.6%. This can become
as large a¥’,,4/M ~ 10% for maximally spinning binaries APPENDIX A: SENSITIVITY CURVES
with spins aligned to the orbital angular momentum. These
binaries are, therefore, among the most efficient sources of

energy in the Universe. For convenience, we report below the sensitivity curves
used to compute the SNRs that are often difficult to collect
from the literature. For LISA we we use the same noise curve
Acknowledgments as for the LISA Mock Data Challenge B [65] as implemented
by Trias and Sintes, and made available by the LISA Parame-
It is a pleasure to thank S. Babak, E. Barausse, M. Hanter Estimation Task Force [66]. The noise curve for advanced
nam, |. Hinder, S. Hughes, B. Krishnan, L. Santamaria, BVirgo can be found in tabulated form in Ref. [23].

LIGO
—56 —4.52 S\ 2
Sh(f):so{(“-j—ff) 40.16 (jio) 40.52 4 0.32 (%) } . Sy=9x107%,  fy =150 Hz,
AdLIGO
—4.14 2 2 4 2\ 1
Su(f) _So{(jio) -5 (%) +111 <1— (f—fo) +1 (f—fo) > <1+% (jio) ) } So—107%. [y —215Hy
Virgo
—4.8 S\ 2
Su(f) = 50{(7%) + 8 (f—;) + [1 + (%) ]} : So=10.2x 10", f, = 500 Hz.
(A1)
|
APPENDIX B: COMPARISON OF WAVEFORMS AT (67,168,690 70, 71], the gravitational-wave informatin is
FUTURE NULL INFINITY computed at7* in a gauge invariant way and with no causal

influence from the outer boundary.

A systematic source of error in the results given in this In practice, we have computed the match between the wave-
paper is the finite radiug, = 160 M at which our wave- forms extracted at, and at7 " for the nonspinning configu-
forms are computed. In order to determine its influence omationsg, and found that\y,.s; = 0.999, which is thus within
the accuracy of the values reported here, we have exploitettie error given by the match between different numerical res
the recent possibility of computing waveforms unambigu-olutions ¢f. discussion in Secf_IVIC and see also Tdble V).
ously at future null infinity7* [57]. In this approach, which Note that the initial separation of the two black holes as re-
makes use of the Cauchy-characteristic extraction tecleniq ported in [57],d = 11 M, is larger than the one reported
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here, thus resulting in a much smaller initial frequengy. wherel, is the Fourier-transform o¥ . For any of the total

Nevertheless, we have considered the same glueing freguenmasses considered here and for all of the detectors, we find

wglue = 0.168/M so as to have a fair comparison between thethat the differences in the SNRs is less thablo. Overall,

two waveforms. both results show that the error introduced by the use of a fi-
In addition, we have also compared SNRs obtained in thaite radius calculation is within our numerical error-bafs

two cases, when the Fourier-transform/gf) as given in  ~ 2.0% and thus does not modify significantly the results ob-

terms of¥, is easily obtained as tained in this work.
- U,
W) =~ 1mp (B1)
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