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Abstract. The impressive advances in global networking and informa-
tion technology provide great opportunities for all kinds of Web-based
information services, ranging from digital libraries and information dis-
covery to virtual-enterprise workflows and electronic commerce. How-
ever, many of these services still exhibit rather poor quality in terms
of unacceptable performance during load peaks, frequent and long out-
ages, and unsatisfactory search results. For the next decade, the over-
riding goal of database research should be to provide means for building
zero-administration, self-tuning information services with predictable re-
sponse time, virtually continuous availability, and, ultimately, “money-
back” service-quality guarantees. A particularly challenging aspect of
this theme is the quality of search results in digital libraries, scientific
data repositories, and on the Web. To aim for more intelligent search
that can truly find needles in haystacks, classical information retrieval
methods should be integrated with querying capabilities for structurally
richer Web data, most notably XML data, and automatic classification
methods based on standardized ontologies and statistical machine learn-
ing. This paper gives an overview of promising research directions along
these lines.

1 Introduction

1.1 Blessings and Curses of the World Wide Web

We are witnessing the proliferation of the global information society with a
sheer explosion of information services on the World Wide Web. This opens
up unprecedented opportunities for information discovery, virtual enterprises
and cyberspace-based collaboration, and also more mundane things such as e-
commerce. Using such services is, however, often a frustrating experience. Many
information services, including Web search engines, deliver poor results - incon-
sistent, arbitrarily inaccurate, or completely irrelevant data - to their clients,
break easily and exhibit long outages, or perform so poorly that unacceptable
response times ultimately render the offered service useless. The bottom line is
that the quality of services is highly unpredictable, and service quality guarantees
are usually absent in today’s fast-moving IT world.
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Contrast this situation with the evolution of database systems. Over the last
three decades, database systems have developed an outstanding reputation for
keeping huge amounts of mission-critical data consistent, virtually never losing
data, providing high availability, excellent performance for a very large number
of concurrently active clients under a wide variety of workload patterns, and so
on. Indeed most mature e-commerce servers use a database system as a backend
server, behind a middle-tier Web application server, for critical processing such
as purchases. The most important assets that database technology provides to
such Web services are [43]:

1. declarative data access through high-level query languages based on predi-
cate logic and exemplified in the SQL standard and

2. automatic preservation of data consistency through atomic transactions in
the presence of concurrent accesses and transient system failures.

These two fundamental contributions have been recognized by the computer sci-
ence community with the Turing Awards to Ted Codd and Jim Gray. Database
systems have proven that they are among the most dependable, intensively
stress-tested services within computer science and the IT business. On the flip
side of the coin, however, we have to admit that full-fledged database systems
are typically heavy-weight platforms, and many of their salient qualities can
be achieved only in conjunction with a human support staff that takes care of
system administration and performance tuning [2,44].

Information retrieval technology, the database area’s neighboring field, is
a cornerstone of digital libraries and text-oriented and, to some extent, even
multimedia-enhanced search engines for the World Wide Web and in Intranets.
Most notably, Gerard Salton’s vector space model is prevalent, in some form or
another, in virtually all search engines [3,5,23]. So information retrieval is among
the most useful Web technologies for the masses. But a closer look reveals that
it heavily draws on heuristics and its effectiveness in satisfying the information
needs of advanced users quite often faces its limits.

1.2 Towards a Science of Service Quality Guarantees

Database technology has the potential for being a backbone of quality-conscious
information services. However, the rapidly evolving, highly diverse world of
global information services calls for a new blend of database technology [44,2].
Often only certain components of a database system are needed as building
blocks that have to be integrated with other technologies such as workflow, mul-
timedia, or security technologies; a prominent example for an application class
with this characteristic is e-commerce. In addition, with a database system’s cost
of ownership being dominated by human feed and care for administration and
tuning, a critical prerequisite for ubiquitous penetration of database technol-
ogy is that it be completely self-tuning, with automatic adaptation to evolving
workload characteristics and “zero administration” in general [9,49].

The elusive goal that we should strive for would be a generalized notion of
guaranteed service quality. The notion of service quality (also known as quality of
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service or QoS for short) has come up in the context of multimedia communica-
tion (see, e.g., [22]), but has so far been limited to low-level issues like guaranteed
packet delivery rates. What we need is a well-founded generalization of this no-
tion to the application level, covering building blocks such as database access
or middleware components like web application and workflow servers, Web or
Intranet search engines, and also comprehensive, value-added information ser-
vices on the Internet. These guarantees are given to the end-users of information
services, but it must also be easy for service builders and providers to enforce the
guarantees. More specifically, I envision the following three classes of guarantees:

– Response time of Web services must be predictable, and we must be able
to guarantee that most service requests, say 99 percent, are served within
user-acceptable time, say, 2 seconds, even during load peaks.

– As a result of globalization, services must be continuously available with
downtimes limited to a few minutes per year. So services should be (more or
less) always up.

– As a particularly important kind of Web service, search engines are becom-
ing a key component for mastering the exploding volume and manifold of
information in our modern society. Therefore, the quality of search results,
in terms of completeness, accuracy, timeliness, and cost-effectiveness, needs
to be drastically improved and should ideally be guaranteed (in a sense that
will be discussed later).

Obviously, there are further aspects of service quality such as provably correct
behavior or guaranteed security, but these will not be considered in this paper
(as they are covered in other papers of this volume). Also note that quality
guarantees are of fundamental importance in many areas of computer science
(see, e.g., [19,50]), not just Web services, but I will focus on Web-related aspects
in this paper.

1.3 Outline of the Paper

The rest of the paper is organized as follows. Section 2 discusses performance
predictability and guarantees. Section 3 considers the goal of continuous avail-
ability. Section 4 discusses the quality of search results for Web search engines.
All sections will first identify the state of the art, then outline the grand chal-
lenges, and finally point out promising research avenues.

2 Performance Guarantees

2.1 State of the Art

Today’s lack of performance guarantees in Web services is often circumscribed
by the nice term ”best-effort performance”, which essentially means that every-
thing is unpredictable and nothing can be guaranteed. In general a number of
components may cause delays: the client’s connection to its Internet provider,
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the provider’s proxy server, the wide-area network itself, the Web application
server at the target site, or the content provider’s backend data server. Usually,
the network bandwidth is not the limiting bottleneck. Rather, the major reason
for poor performance during peak hours is that requests suffer queueing delays
at congested data servers or gateways. Mean response time may be acceptable
when averaged over long time periods like a week or a month, and some applica-
tion service providers even make contractual guarantees about such long-range
metrics. However, these guarantees can be easily given yet do not tell much about
the observed response time distribution during the most popular business hours,
which is when performance matters most. The core of the problem lies in the
Internet, application, or content providers’ inability to predict the quantitative
behavior of their servers at sufficient detail and to configure the server resources
appropriately.

What we need is not just better response times in a general sense, but pre-
dictability and guarantees about the tail of the response time distribution. Ide-
ally, we would wish to give an upper bound for the worst-case response time of
client requests, but with the entire world being potential clients of a server, the
workload can be characterized only statistically at best. Consequently the server
resources needed for true worst-case guarantees would exceed all economically
feasible limits. So response time guarantees should be stochastic, for example,
specifying that the response time will be 2 seconds or less with probability 99
percent.

As an example for stochastic guarantees along these lines consider a media
server that transfers video data streams to clients over an extended time period
(i.e., the playback duration of a video). The server discretizes the continuous
stream in a round-based manner, with round length T (e.g., one second), by
periodically sending data fragments each of which holds enough data for say
the next round of playback. For smooth playback at the client it is crucial that
these fragments arrive just in time, to avoid glitches such as user-noticeable
“hiccups”. A complication is that video data is usually encoded with variable
bit rate because of compression. So the size of fragments varies within a video
(and also, of course, across video or audio objects). To ensure service quality for
all simultaneously active streams the server employs an admission control. An
additional data stream is admitted only if the fragment delivery deadlines can
still be met for all subsequent fragments of all active streams including the new
one.

For given server resources (e.g., number of disks, amount of memory) as well
as data and workload profiles, the server needs to know the maximum number,
N, of admissable concurrent streams. This limit can be derived in a conservative
manner by assuming a maximum fragment size and worst-case disk access delays
for all streams in all scheduling rounds (see, e.g., [22]). However, this crude
assumption does not take into account the variability of the fragment size and the
disks’ performance behavior, and therefore tends to end up with a substantially
underutilized server. A much better cost/performance ratio can be achieved by
addressing this problem in a stochastic manner. What we need to compute is the
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maximum number of fragments, N, such that the total service time for fetching
all N fragments from disk does not exceed the round length T with, specifiable,
high probability (e.g., 99.99 percent). To this end, we decompose the service
time into seek time, rotational delay, and transfer time - characterizing each
in a stochastic manner, and then consider the convolution of these continuous
random variables. Not surprisingly, this derivation is more tractable in terms of
the Laplace transforms of the various distributions, and we can use results from
large deviation theory, most notably, Chernoff bounds [35], to obtain an explicit
result for the maximum sustainable number of streams [36]. The predictions and
thus guarantees derived from this model are fairly accurate and can substantially
improve the cost/performance of the server. In summary, such a stochastic model
serves to configure the server, by choosing an appropriate limit for the admission
control and determining the number of disks and the amount of memory such
that the required service quality for the given workload can be guaranteed.

A similar methodology can be applied to predict the response time distribu-
tion of data requests to a conventional Web server that manages discrete data
like text or image documents. An intriguing generalization that goes one step
further is to consider mixed media servers that manage both continuous me-
dia and discrete data. For example, in teleteaching students should not simply
watch tape-recorded lectures, but should also work with electronic textbooks,
load demo programs, and so on. It is generally beneficial to hold both continuous
and discrete data objects on a shared disk pool, so that load fluctuations can be
smoothed to the best possible extent; otherwise, with two dedicated disk pools,
we could end up with the discrete-data disks being overloaded at some point
while at the same time the continuous-data disks could be underutilized. Such a
load-sharing approach to a mixed media server requires special considerations on
the disk scheduling of requests and a much more sophisticated stochastic model
for predicting both the glitch rate of continuous data streams and the response
time of discrete data acccesses. A solution for this problem has been developed
in [37].

2.2 Grand Challenge

Performance guarantees along the lines outlined above should by no means be
reserved to multimedia applications, but should rather be an integrated part
of all information services on the Web. Like in our examples, it is crucial that
such guarantees capture the tail of the response time distribution, as opposed
to referring merely to mean values. ¿From a customer viewpoint, these should
be money-back guarantees: unacceptable performance results in no payment or
compensation by the service provider. In 2010 all services that do not provide
such guarantees should be out of business within their first month of operation.

I envision the following to become common practice. Vendors or application
service hosts will give free hardware and software to content providers for some
trial period (e.g., a few weeks). During this period the system will capture a
profile of the workload and will determine an appropriate system configuration.
Then a contract is set up that includes money-back performance guarantees
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between the vendor and the content provider. An analogous contract will be
in effect between the content provider and end-user customers. The stochastic
guarantee would translate into a test on a concrete sample of actual information
requests by a customer: if the response time is unacceptable in more than say
5 percent of all requests then the customer will get her money back. As the
workload may evolve over time, the various self-tuning servers should monitor
the criticality of their stochastic promises, automatically analyze potential bot-
tleneck, and alert the content or application service provider about necessary
resource upgrades. Note that this way we no longer rely on human administra-
tors that often realize only after a week of poor performance that some action
is overdue.

2.3 Research Avenues

A new research community has recently been emerging under the name Web
Engineering. Obviously, providing better performance is a top item on their
agenda, studying issues like hierarchical and distributed caching and prefetching
as well as optimizations to network protocols. However, as pointed out above,
this is not far-reaching enough. Performance guarantees are needed, and they
require predictability of the function that relates workload and server as well
as network configuration to the resulting performance metrics. This topic is, of
course, not at all new: performance assessment based on stochastic modeling
has been a very strong field in the seventies, but it has now disappeared from
most computer science curricula. I claim that stochastic models are the key to
predicting and thus controlling Web service performance. Without such rigorous
underpinnings Web Engineering will fail.

It is, of course, well known that the mathematics of stochastic model becomes
extremely difficult and sometimes intractable when the models reach a certain
complexity, especially when certain standard assumptions such as Poisson ar-
rivals are no longer justified (see, e.g., [24]). In such situations, there are two
options:

– We can attempt to analyze a conservative approximation of the real system
that serves as an upper bound for the actual performance. For example,
for the mixed media server sketched in Subsection 2.1 we were faced with
a mix of periodic and Poisson arrivals and a fairly sophisticated, dynamic
(i.e., state-dependent) scheduling policy. The actual analyis considered a
static scheduling policy for tractability, and we carefully reasoned that the
dynamic policy does never perform worse. In a similar vein, when a compre-
hensive mathematical solution is out of reach, we may resort to simulation
results, with proper statistical confidence, for submodels and derive higher-
level metrics from such submodels using analytic methods.

– Sometimes the best remedy is to simplify the real system itself to make the
analysis tractable. This would usually result in some performance losses,
but the gain lies in predictability. With simpler building blocks absolute
performance can often be boosted by simply scaling up hardware resources
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(i.e., memory, disks, etc.), while still being able to give strong performance
guarantees. For example, our mixed media server could be simplified by not
exploiting any resource sharing between continuous and discrete data, essen-
tially boiling down to separate servers for each of the two workload classes
with disjoint resources. Then, of course, the analysis would become much
simpler and even more accurate. This consideration can be viewed as an
instance of the “pick the low hanging fruit” engineering rule of thumb. This
is to say that often 90 percent of the solution (and the performance) can
be achieved with 10 percent of the intellectual effort and resulting system
complexity. Scientists should not be too proud to exploit this kind of prag-
matic approach (notwithstanding the fact that long-term research towards
the most general solution should be continued as well).

Unfortunately, too often neither of these options is pursued and rather the math-
ematical difficulty of the analysis is used as an excuse for merely providing “best-
effort performance”.

3 Continuous Availability

3.1 State of the Art

The availability of a server is the probability that a client request at an arbi-
trary timepoint will find the server listening and willing to process the request.
The reason for temporarily being unavailable are transient failures and result-
ing downtimes. After a failure a server undergoes some recovery procedure, a
“repair”, and will then resume normal operation until the next failure occurs.
In the long term (i.e., the stationary case with time approaching infinity) the
availability of a server is given by the ratio MTTF

MTTF+MTTR with MTTF denoting
the mean time to failure and MTTR the mean time to repair.

To improve availability and approach the ideal value 1.0 the obvious approach
seems to increase the MTTF. However, empirical observations tend to suggest
that the MTTF cannot be advanced without limits. The main problem why
servers occasionally crash are so-called Heisenbugs, virtually non-reproducible
software errors that occur once in a while because of special race conditions or
other synchronization bugs, exotic feature interactions, or inadequate configura-
tion and administration settings in multi-threaded, heavily loaded servers under
specific stress conditions [20]. Such bugs resemble Heisenberg’s uncertainty re-
lation: if we instrument the system for debugging then the bugs do not occur
anymore. In many of the less mature Internet applications even Bohrbugs (the
deterministic counterpart to Heisenbugs) are common because of poor debug-
ging. Clearly, there is no real reason why it should not be possible to eliminate
Heisenbugs (and Bohrbugs should definitely be eliminated by proper software
engineering), but many existing information systems are so large and complex
that even state-of-the-art verification and debugging methods will be inherently
incomplete for quite a few years to come. In addition, Heisenbug problems are
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often aggravated by poor system administration, for example, inappropriate con-
figuration or tuning settings. Note that periodic rebooting (e.g., once a week),
which may be viewed as a prophylactic measure against Heisenbugs, leads to
occasional downtime, too, and thus adversely affects availability.

The approaches that database systems have taken to cope with these prob-
lems are the following:

– Database servers should fail-stop upon the first indication of something going
abnormal and provide fast and robust database recovery, based on transac-
tional atomicity and persistence and highly optimized crash recovery algo-
rithms [20,51].

– For mission-critical applications, data and server processes should be repli-
cated on a backup site that can take over more or less immediately when the
primary server fails. The backup may be within the same shared-disk cluster
(i.e., in the same room or a neighboring building), or geographically remote
(i.e., in a different city) if disaster recovery is an issue. In either case, the
“failover” procedure by the backup involves rolling back active transactions
and may thus be noticeable to application programs which then need special
failure handling code.

– Whenever possible and affordable database systems should be administered
by highly skilled and experienced (hence usually highly paid) humans who
apply great care in system setup, monitoring, and occasional re-configuration.

These techniques have been developed to a fairly mature level in the database
industry, and in conjunction with professional administration availability levels
of 99.99 percent are the standard for mission-critical systems such as stock trad-
ing platforms or online banking. On first glance this figure seems impressive, but
a closer look shows that it is still far from being satisfactory. 0.01 percent unavail-
ability translates into approximately one hour downtime per year, and because
of the Heisenbug phenomenon it is more likely that crashes hit during popular,
heavy-load business hours. According to business analysts one minute downtime
has a cost of up to a $ 100,000 because of its impact on the affected company’s
market position [39]. Furthermore and most importantly, the 99.99 percent avail-
ability figure solely refers to the data server, which is only the backend in modern
Web applications. Because application programs need to be execute their fail-
ure handling logic for retrying aborted transactions the actual outages observed
by end-users are significantly longer (e.g., when application programs need to
open new ODBC sessions or perform long computations within the transaction).
Often such code is incomplete or missing, and then failures are exposed to the
user, for example, by showing a message like “status code -23495: no such trans-
action” in the user’s Internet browser. For an e-commerce service such behavior
is fairly embarrassing (and more than inconvenient to the user) when this hap-
pens upon the final checkout with a full shopping cart. On the other hand, the
application program or the user must not blindly re-initiate a transaction even
if no positive return code has been received, as the transaction may nevertheless
have succeeded and its effects are not necessarily idempotent. Users that are not
sufficiently careful may end up buying the same book twice. So, in summary,
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user-transparent recovery is not well understood for entire e-services that com-
prise Internet connections and middle-tier application servers that communicate
with one or more backend database servers and possibly also other application
servers in a federated manner (e.g., to implement company-wide business portals
or value-added broker services such as electronic travel agencies).

3.2 Grand Challenge

Given that downtime, at the user-perceivable level, is so expensive, bold steps
towards continuous availability should have very high priority on our research
agenda. The grand challenge for 2010 is to achieve less than one minute expected
downtime per year, which is equivalent to 99.9999 percent availability, a two
orders of magnitude improvement of unavailability and a good approximation of
truly non-stop services.

The most futuristic aspect of this challenge lies in the fact that availability
should be measured from the end-user’s perspective. It is not good enough that
the database server is up (again) but the application itself is not responding
to the user. To this end, a comprehensive notion of recovery is needed that
integrates data, process, and message recovery in an efficient manner. Recovery
procedures at the various levels should be coordinated so that all failures can
be masked to the human users. With complex, multi-tier and federated, system
architectures for modern Web services, this challenge amounts to some kind of
world-wide failure masking.

Finally, because failures will still occur but should be masked by replication
and fast failover, availability must really be assessed in combination with per-
formance. During failover procedures and while some primary servers are down,
the backup servers have to process a higher load and thus exhibit a certain re-
sponse time degradation. Systems should be configured such that response time
guarantees can still be satisfied in the presence of such degraded phases.

3.3 Research Avenues

In principle, world-wide failure masking is “merely” a matter of logging all data
updates, messages and other events, and periodically saving the state of all
involved processes. Such approaches have been pursued in the fault tolerance
community for a long time [11,20], but practical solutions have been limited
to dedicated server complexes for special applications (e.g., stock trading) and
typically have high overhead. The difficulty in scaling up these approaches lies
in the subtleties of the interplay of many, largely autonomous, components in
a multi-tier federation and their recovery behavior. Orchestrating a large num-
ber of highly distributed logging and recovery managers in an efficient manner
with all failures masked will probably require new principles. The reply logging
method in [33] may be a promising starting point, but has to be generalized from
client-server systems to general, multi-tier, Web applications. Also, as recovery
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code is really critical and the devil is in the details, rigorous correctness reason-
ing for this code is mandatory. This may call for a new comprehensive theory of
recovery.

In addition to these fundamental advances that I envision for the next decade,
the overriding goal of reaching 99.9999 percent availability requires significant
progress on the engineering side as well. In particular, error-prone system admin-
istration tasks need to be automated to the largest possible extent (as already
pointed out, from a different perspective, in Section 2). Furthermore, software
maintenance must be possible without interrupting system operation. For exam-
ple, it should be possible to upgrade to a new version of the operating system
without having to bring down the database system on the same computer.

Finally, the key to satisfying performance goals even when some replicated
components are down and have failed over to backup components is to configure
the overall system appropriately. Most importantly, the degrees of replication,
for data and processes, determine not only the absolute availability but also the
effective performance. Note that in advanced services that involve many com-
ponents the probability that some (replica of a) component will be temporarily
down is non-negligible, so that we cannot simply carry over the optimal perfor-
mance (with all replicas of all components simultaneously running) to the real
state(s) of the overall system. The necessary conditioning of the relevant perfor-
mance metrics with the probabilities of the various system states leads to the
notion of “performability”, a concept that has been around in the performance
modeling community for quite a while [24] but is otherwise virtually unknown.
So we need stochastic models along these lines and configuration tools for per-
formability guarantees. An initial approach in this direction, although limited
to a specific system context, can be found in [18].

4 Search Result Quality

4.1 State of the Art

All search engines for the Web, Intranets, or digital libraries mostly build on the
vector space model that views text documents (including HTML documents)
as vectors of term relevance scores. These terms, also known as features, repre-
sent word occurrences in documents after stemming and other normalizations.
The relevance score of a term in a document is usually derived from the term
frequency (tf) in the document and the overall number of documents with this
term or the corresponding total term frequency, the so-called inverse document
frequency (idf), giving rise to (several variants of) the somewhat pragmatic, but
empirically well proven tf*idf formula. Queries are vectors, too, and we can then
use a similarity metric between vectors, for example, the Euclidean distance or
the cosine metric, to produce a ranked list of search results, in descending or-
der of relevance scores (i.e., estimations of what the user who posed the query
would rate as relevant). The quality of a search results is assessed a posteriori
in terms of the empirical metrics precision and recall: precision is the fraction of
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truly relevant documents in the result or the top N matches in the result rank-
ing (N typically being 10), and recall is the fraction of found documents out of
the relevant documents that exist in the underlying corpus (or the entire Web).
Experimentally studying precision and recall is itself a difficult issue.

A nice property of this classical approach is that it can be generalized to
searching on multimedia objects such as images, videos, or music [14,22]. Once
an appropriate feature space has been defined, for example, based on color dis-
tribution or contours in images, the principles of similarity ranking apply more
or less directly. Of course, appropriate features heavily depend on the specific
application. Current approaches on this issue still seem to be more of an art than
scientific engineering. Notwithstanding this general assessment, there are some
useful cases of multimedia similarity search in limited application contexts.

The above technology based on the vector space model is more than twenty
years old and applicable to any kind of text document collection. But the Web is
more than just a corpus of documents, given that its documents are extensively
cross-related through hyperlinks, and also many Intranets are structured in such
a fashion. A relatively recent trend has been to analyze the link structure between
the documents, viewing the Web as a graph, and define the authority of Web sites
or documents as an additional metric for search result ranking [5,28]. One way of
doing this is to consider a random walk on (a large representative sample of) the
Web where outgoing links are followed with uniform probabilities, adding up to
1− ε, and a random jump is performed with probability ε. Then the stationary
probabilities of hitting a URL can be computed from the underlying discrete-
time Markov chain, and these probabilities are used as authority scores. There
are alternative ways of defining and computing the notion of authority, but all
lead to similar Eigenvalue problems. The point of this metric is that documents
or sites with high authority should be preferred in search results, to achieve
better precision (i.e., “to sort out the junk” in more colloquial terms).

It is important, however, to realize that authority is different from and com-
plementary to the notion of relevance. In fact, search engines that make use of
authority combine it with tf*idf-based relevance scores, for example, by com-
puting a weighted sum of authority and relevance scores where the weights are
chosen in a pragmatic, more or less ad hoc, manner. Further note that authority
assessment is of help mostly for popular queries that would otherwise produce
a huge result list (e.g., searching for famous pop stars, actors, or politicians).
It does not help much for advanced, expert-style queries for which it is difficult
to find any useful results at all (i.e., for which recall is the problem). As an
example, searching for ”Chernoff theorem” on Web search engines that take into
account authority metrics leads to hardly any useful results. Typically, these
search engines return frequently cited documents such as conference home pages
that do have some relationship to stochastics and sometimes even large devia-
tion theory, but the actual information that one is looking for (i.e., the theorem
that explains what Chernoff bounds are) can at best be reached by manually
traversing outgoing links (e.g., textbooks referenced in papers that appear in
the conference whose home page was found). Of course, the relevance estimation
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problem shows up in this example as well, and this holds for both search engines
with and without authority assessment. For example, one search engine returns
a document about Fermat’s theorem among the top ten (obviously collapsing
all theorems into one topic, which is probably considered exotic enough for the
masses of Web users), another engine points to a “model” Mikki Chernoff, and
even the better engines tend to deliver scientific publications that cite Chernoff
but are otherwise only remotely related to the query itself. The most useful re-
sult, a textbook on large deviation theory, was found (among the top ten) only
by Yahoo, which uses a manually/intellectually produced directory and is thus
actually incomparable to the fully automated search engines. One can easily
think of many more advance examples with similarly poor search results (e.g.,
searching for infrequent allergies, people who share an exotic hobby, descriptions
of specific hikes off the beaten path, etc.)

4.2 Grand Challenge

The Web can be viewed as a huge, global knowledge base that potentially bears
the answers to almost all information needs for almost everybody: common peo-
ple who are interested in sports, traveling, or other hobbies, business people who
are interested in market data and financial news, scientists who are interested
in background material from neighboring fields and results related to their own
work, and so on. Our ability to exploit this great potential and find high quality
results for advanced queries are still fairly immature. In particular, advanced
queries that are, so to speak, looking for needles in haystacks are poorly handled
by today’s search engines. These are queries that would find few results even
under ideal conditions; so recall rather than precision is the main problem here.

For 2010 I hope to see tremendous progress on the capabilities for intelligent
information search. We are indeed forced to tackle this as a grand challenge in
science in general, for otherwise we will inevitably be swamped with information
without being able to retrieve any useful results. This follows from a simple
extrapolation of the rapid growth of information in the world and the observation
that advances in information retrieval have been fairly incremental in the last
two decades. Currently there are still ways of compensating poor search engine
results by manually navigating in the extended neighborhood of some reasonably
promising URL or resorting to intellectually maintained directories of the Yahoo
style. However, these methods are very time-consuming, and become less and less
affordable with intellectual time being the most precious resource. Even worse,
there is no way for these manual methods to scale up with the rapid growth of
the Web.

Examples of the kind of advanced queries that intelligent search engines
should be able to effectively (and efficiently) handle in a decade would be:

– A hiker seeking for information on a particular cross-country (i.e., trail-less)
route that is not available in any guidebooks but likely to be discussed on
personal homepages of a few adventurous hikers.



The Web in 2010: Challenges and Opportunities for Database Research 13

– A programmer searching for publicly available code for a specific algorithm
(e.g., a B+-tree with built-in concurrency control) in a specific language on
a specific operating system.

– A mathematician (or computer scientist) who conjectures a certain result
and searches for similar theorems that are already known (including more
general theorems that cover the conjecture as a special case).

– A surgeon who prepares herself for a complicated brain surgery and searches
for similar cases (including similar X-ray images or tomographies of tumors).

Ultimately, next-generation Web search engines should be able to find every
piece of information that a human expert could retrieve if she had infinitely
much time (and provided the requested information is somewhere on the Web
at all). Needless to say that the search engine should be a lot faster, but speed
alone is not an end by itself. For advanced queries of the kind mentioned above
humans would surely tolerate a response time of up to a day if the results are
useful and the search engine saves precious intellectual time.

The above emphasizes the effectiveness of searching in terms of finding good
results. Equally important aspects are the completeness of the search in that
all possible information sources are exhausted, and the efficiency of the search
process. The Web as it is covered by the union of search engines today con-
tains about 1 Billion (i.e., 109) documents with a total size of 20 Terabytes. In
addition, however, there is a huge amount of interesting and relevant data be-
hind Intranet gateways and other portals, typically but not necessarily in more
schematic databases. This includes information sources such as CNN and other
news providers, amazon.com which has descriptions and reviews of books, the
US patent database, the library of congress, various climate data centers with
lots of satellite images, and so on. This so-called “Deep Web” [4] is estimated
to have 500 Billion documents with a total size of 8 Petabytes, and it is the
fastest growing part of the entire web. So the “surface” Web that is in reach of
today’s search engines is less than 1 percent of all information sources. For 2010
I expect that a large fraction of the Deep Web will indeed be searchable in a
unified manner, and that we will have found reasonable means to cope with the
tremendous scalability problem that we are facing.

4.3 Research Avenues

4.3.1 The Great Synergy. Progress in information retrieval has been in-
cremental, and we cannot expect a breakthrough in the next decade given the
extreme difficulty of the intelligent information search problem. However, there
are a number of trends each of which will gradually improve the state of the art,
and all of them together will hopefully lead to great synergy and major advances
in the quality of search results:

– The XML standard has the potential to foster semantically richer annota-
tions of text documents, and query languages for XML provide powerful
pattern matching capabilities on these annotations.
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– Hierarchical ontologies organize documents in topics and can contribute to
much more precise query formulation as well as query refinement in a way
that is largely transparent to the user.

– To automate the building and maintenance of large-scale ontologies, auto-
matic classification algorithms, based on statistical learning, can be lever-
aged.

Note that these trends aim to automate the manual pre- and postprocess-
ing that we have seen to be useful for better search results in the “Chernoff
theorem” example of Subsection 4.1: XML pattern matching can replace the
manual navigation in the environment of some promising URL, and ontologies
with automatic classification should replace manually maintained, Yahoo-style,
directories.

In the following subsections I will discuss the above research directions in
more detail. I will also discuss implications on the architecture of a search engine
under the perspectives of scalability and coverage of the “Deep Web”.

4.3.2 XML. XML is a W3C standard and widely considered as the main
driving force in the ongoing endeavor for uniform data exchange and integra-
tion of heterogeneous data across the entire spectrum from largely unstructured
to highly schematic data. In an abstract sense, all data is uniformly captured
by a graph with nodes representing XML elements along with their attributes
and with hyperlinks being elements of a special type [1]. A variety of query lan-
guages have been proposed for searching XML data (see, e.g., [8,12,29]). These
languages combine SQL-style logical conditions over element names, contents,
and attributes with regular-expression pattern matching along entire paths of
elements. The result of a query is a set of paths or subgraphs from a given data
graph that represents an XML document or document collection.

As an example consider the following three XML documents about vacation
destinations and traveling. Note that the element names and the structure of the
XML documents vary slightly; so there is no universal schema. We may think of
the three documents as coming from two different information sources, one for
the left-hand column and another one for the right-hand column.

<region> Europe
<place> Sylt
<location> Germany </location>
<beach> sandy beach on the shore of

the North Sea </beach>
<activities> dune hiking,

surfing </activities>
<season> summer </season>

</place> </region>

<region> Europe
<place> Bernese Oberland
<location> Switzerland </location>
<activities> skiing, hiking,

climbing </activities>
<season> winter, summer </season>

</place> </region>

<region> Overseas
<sight> Townsville

<country> Australia </country>
<attractions>

<attraction> beach </attraction>
<attraction> coral reef
</attraction>
<what-to-do>

<diving> scuba diving outside
the reef ? </diving>

<snorkeling> snorkeling in the
coral reef ?

</snorkeling>
</what-to-do>

</attractions>
<time> all seasons </time>

</sight> </region>
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It is important to note that the element names in the above example data are
not chosen arbitrarily but rather comply, to a large extent, with certain standard
terminology – or a domain-specific ontology as we may say. This is a key point of
XML: although it merely provides a syntax, it is creating a big momentum in the
industry and also the scientific community to organize data in a better way, for
example, by using ontological frameworks. There are ongoing efforts to provide
XML element names spaces and DTDs or even schemas for business-to-business
e-commerce data (specifying the structure of purchase orders, invoices, etc.),
publisher data (specifying book layouts), genome research and bioinformatics,
mathematics (with element names such as <theorem> or <Abelian group>),
and so on [17,38,41,52]

Element names that follow, to a large extent, certain terminological conven-
tions, are semantically rich annotations that potentially capture the topic and
content of a document in a clearer way than the document text alone and thus
facilitate more precise queries. This is the opportunity for better search result
quality that XML query languages aim to exploit. For example, a search for vaca-
tion destinations where you can swim in the summer can be expressed as follows
(in the specific syntax of the language XXL [47], standing for “FleXible XML
Search Language”, but other XML query languages have very similar abstract
syntax):

Select P

From http://my.holiday.edu/allsights.xml

Where region.(place | sight) As P

And P.# LIKE "%swimming%"

And P.#.season LIKE "%summer%"

Words put in boldface are keywords (e.g., Select), uppercase single letters are
element variables (e.g., P), # is a wildcard for element paths of arbitrary length
≥ 0, and dots denote path concatenation. The Where clause of the query is a
logical conjunction of path expressions which specify regular expressions (using
constructors *, +, ? for≥ 0,≥ 1,≤ 1 iterations, resp.) over elementary conditions
on name or content of elements or attributes. Such elementary conditions include
substring matching using the SQL-style LIKE operator and the wildcard symbol
% for arbitrary strings within a single element’s content. Element variables (e.g.,
P) are bound by the As clause to the end node of a path in the data graph that
matches the corresponding path expression, and denote this node when used in
other expressions.

Although the above query is a perfectly nice example that demonstrates
the expressive power of XML query languages, it also shows the limitations of
queries with a Boolean retrieval semantics, returning a set of qualifying results
as it is usual in database query languages: the query result is the empty set, for
none of the three given documents explicitly contains the word “swimming”. This
observation is not atypical for settings where the underlying data is partly or even
largely unstructured such as the Web or comes from different, heterogeneous,
information sources such as large Intranets.
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To make XML querying truly Web-enabled, ranked retrieval must be sup-
ported where the result of a query is a list of element paths (or subgraphs in
general) in descending order of estimated relevance to the query. This kind of
similarity search, in the spirit of information retrieval technology, is being pur-
sued in a few, very recent language proposals [10,16,47]. In XXL this capability is
provided by an additional elementary operator ∼ that tests similarity of name or
content of elements or attributes, using an underlying ontology (i.e., thesaurus
in more mundane terms) that captures related terms and standard similarity
metrics like the tf*idf formula. The above information demand can be better
expressed by the following XXL query:

Select P

From http://my.holiday.edu/allsights.xml

Where region.∼place As P

And P.#.(∼swimming)? ∼ "swimming"

And P.#.∼season ∼ "summer"

In this query the similarity operator ∼ is used as both a unary operator
on element or attribute names and a binary operator on element or attribute
contents. For all kinds of elementary similarity conditions a similarity score is
computed, and the scores from different conditions are combined using simple
probabilistic arguments. The latter is based on postulating probabilistic inde-
pendence between different conditions; better approaches that would capture
correlations among element names and terms in element contents are subject of
future research. The above query would return a ranked list with Townsville as
the best match (i.e., the XML element bound to variable P that has the highest
overall similarity score with regard to the query conditions) and Sylt as the sec-
ond best match. This order is based on ontological similarity of element names
which would rate “swimming” as more closely related to “snorkeling” than to
“surfing”.

More details on XXL can be found in [47], but note that this approach is
still in a fairly early state, especially with regard to efficient implementation
techniques. The key point that I wish to emphasize is that XXL and the few
related projects reconcile two different search paradigms: the logical condition
evaluation and pattern matching capabilities from database and XML querying,
on one hand, and the similarity search with ranked results from information
retrieval, on the other hand. It is this combination that bears a great potential
for better search result quality. In contrast, traditional information retrieval and
all current Web search engines completely miss the opportunity that arises from
the more explicit structure and semantically richer annotations (i.e., element
names) in XML documents.

4.3.3 Ontologies. Ontologies have been around in the AI community for
more than a decade (see, e.g., [31,34,42]). The main goal has been to construct
a universal knowledge base as a backbone for all kinds of automated reasoning.
Consequently, the representation language was typically very rich, for example,
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some form of description logic or higher-order logical assertions, but the scope
and goal for using the ontology were not clearly defined. Today, we have a much
clearer picture of what we would like to do with ontologies in the context of Web
information retrieval. Furthermore, we should once again apply the engineering
rule of “picking the low hanging fruit”: relatively simple representations could
already achieve most of the leverage within a reasonable timeframe, whereas
perfect solutions often are elusive.

For example, the simplest kind of ontology would be a tree of topics (also
known as categories or “concepts”): each topic could be characterized by a set
of names (i.e., synonyms) for the topic, where the same name can appear under
different topics (i.e., if it is a polysem) [15]. The edges of the tree would represent
topic-subtopic (i.e., specialization) relationships. For example, a topic “science”
would have subtopics “mathematics”, “philosophy”, “physics”, etc.; “mathemat-
ics” would have subtopics “algebra”, “stochastics”, etc., and “stochastics” would
in turn have finer-grained subtopics such as “statistical hypothesis testing” or
“large deviation theory”. Richer structures for ontologies are conceivable and not
unlikely to be needed, for example, lattices of topics, but it is debatable whether
a full-fledged logic-based knowledge representation language is worthwhile. Each
topic in the ontology has its specific terminology, which could be captured in the
form of “archetypical” sample documents or, more explicitly, as a set of specific
terms with weights like tf and idf values or even correlation measures between
terms; the latter can be computed from the sample documents. For example, we
would expect terms such as “variability”, “tail”, or “bound” to have high weights
within the subtopic “large deviation theory”, and even “Chernoff bound” might
be a term that is explicitly known in the ontology. In addition, with XML the
description of a subtopic should also include typical element names or element
paths along with statistical information about them.

Ontologies can, and often should, be domain-specific or even personalized in
that they reflect the specific interests of an individual or community (see, e.g.,
[26,27,45]). Queries can be directed to a domain-specific ontology (just like we
make use of domain-specific search engines already today) and would be en-
hanced by transforming them into a more precise form with richer annotations.
For example, the search request for “Chernoff theorem” when issued to a math-
ematical ontology could be rewritten into the following query, specified in XXL
because I ultimately expect all queries to be on XML data:

Select P

From http://my.math.ontology.edu/math.xml

Where #.math?.#.(∼large deviation)?.#.theorem.∼Chernoff As T

This obviously requires mapping the original query to the best fitting subtopic
in the ontology and deriving the enhanced query from this subtopic’s descrip-
tion. Likewise, queries that give some reasonable but not yet fully satisfactory
results can be refined by having the user provide feedback and mapping the
good results into the ontology to derive a refined query. All this can be done
in a mostly implicit manner, with relatively little effort for the human user,
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through comfortable user interfaces. In fact, such relevance feedback is an old
hat in information retrieval research, but has had amazingly little impact on
Web searching so far. On the other hand, the combination with hierarchical on-
tologies and richer annotations in the form of XML elements does not seem to
have been explored so far.

4.3.4 Automatic Classification. Automating the building and mainte-
nance of a hierarchical ontology requires automatic classification, typically using
some form of supervised, statistics-based, learning. So we start out with a seed
of training documents that have to be classified intellectually. Good training sets
could be derived from users’ bookmarks or other carefully chosen, archetypical
documents (e.g., by extracting positive results from users’ “surf trails” in a semi-
automatic manner). This way each topic can now be characterized by its specific
distribution of terms, element names, paths, etc., or features in general.

The key building block then is a statistical classifier which needs to estimate
the conditional probability that a new, previously unseen, document belongs to
some topic given its feature vector. Here we can exploit Bayes theorem or more
powerful mathematical machinery to derive these probabilities from statistical
parameter estimates that we obtain from the feature distributions of the training
sample. Documents are assigned to the topic to which they belong with highest
likelihood. The simplest and most popular classifier of this kind is known as the
Naive Bayes method, which makes a number of strong, simplifying assumptions
such as postulating independence of term frequencies. Naive Bayes often per-
forms not much worse than many of the more sophisticated methods; after all,
we only have to estimate the odds that a document belongs to a topic versus
not belonging there [32]. Nevertheless, better classifiers, most notably, methods
based on support vector machines, are absolutely worthwhile to explore for (XML
or text) document classification (see, e.g., [13,25] and the references there).

The quality of automatic classification is measured empirically by intellec-
tually inspecting the fraction of correctly classified documents. Unfortunately,
exeriments in this field are fairly limited and would have to be viewed as toy
experiments relative to the sheer size and diversity of the Web. For example, a
typical benchmark looks at 10,000 short newswire articles from Reuters, which
belong to about 100 different categories, takes 75 percent of these articles as
training data, and then automatically classifies the remaining 25 percent. Note
especially that all documents really come from one of the 100 categories, which
would not be the case (or would not be known) for highly diverse Web data. And
even in such a relatively simple setting, the best classifiers are typically correct
only for about 80 percent of the documents.

So there is work to do along these lines, and we need to explore better statis-
tical learning techniques and intensify our efforts on large-scale experimentation.
A critical aspect is also the selection of which features of a document should be
used for the classifier. The simplest approach would just look at tf and idf values
of individual terms, but term pairs or triplets could be used as well and often it
is better to use only a small subset of “meaningful” terms as features to elim-
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inate “noise” and to achieve scalability. The latter approach incurs subtle but
critical difficulties with hierarchical classification: a term that serves well as a
discriminator at one level of the ontology may be an inflationary and thus mean-
ingless term at the next lower level. For example, the (frequent occurrence of
the) term “theorem” intuitively is a good indicator for a document to belong to
the topic “mathematics” (say rather than “humanities”), but it does not provide
any glues for identifying the proper subtopic within mathematics. There is some
preliminary work on how to determine whether a feature is discriminative or
not, based on information-theoretic considerations [6]. However, this is limited
to simple terms (i.e., normalized word occurrences) in plain text documents; the
same question is widely open for XML elements or element paths.

In general, our understanding of these issues still seems to be in its infancy,
and I would very much wish to see a new “master theory” of information content
and relevance. Obviously, such a theory should leverage information-theoretic
principles, but needs to eliminate the fairly strong, and often unrealistic, as-
sumptions (especially with regard to feature independence) that have typically
been made in the prior literature on information retrieval (including the perhaps
most ambitious work [40]). Such a theory would be useful for reasoning about
the “optimality” of a search result, even if it cannot eliminate the inherent un-
certainty in vague queries and even if it is not practical (e.g., for complexity
reasons) but could still serve as a yardstick against which real search engines
could be systematically compared.

4.3.5 Deep Search. Current search engines do not reach the Deep Web
because they rely almost exclusively on precomputed results: crawling the web
and building up index structures, with query processing mostly boiling down
to a few fast index lookups. For reaching data behind Intranet portals and for
fully exploiting the capabilities of next-generation query languages such as XXL,
more powerful “deep search” strategies are needed.

Index structures are still key for scalable query processing, but index lookups
should only provide seeds for further automatic exploration in the neighborhood
of promising URLs. Topic-specific crawlers [7] should be spawned from such
URLs at the run-time of an individual query for “semantic” pattern matching
according to the given XXL-style query. When coming across a portal behind
which no direct crawling is allowed but which supports a search interface (e.g.,
sites such as CNN or amazon.com), a subquery should be dynamically generated
and issued to the portal’s local search engine. With XML and XML querying
becoming ubiquitous standards, the most promising interface between the global
search process and the local search engines would be in the form of a prevalent
XML query language. To support the global search in generating the best possi-
ble subqueries, portals should describe their contents in terms of an XML schema
or DTD and export also a local ontology along with statistical representations
of the various subtopics.

The envisioned search method combines paradigms from today’s (index-
centric) Web search engines and prototypical approaches for query processing in
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database federations. Note that similar multi-tier search algorithms are already
in use by some metasearch engines (or search brokers) that generate specific sub-
queries for different underlying search engines (possibly including topic-specific
engines) and (claim or aim to) take into account the thematic coverage and
profile of the underlying information sources (see, e.g., [46]).

The biggest challenge in making this extremely flexible search process prac-
tically viable lies in the scalability aspect: coping with thousands of informa-
tion sources and, ultimately, the entire “Deep Web”. In this respect caching
and prefetching are key technologies to achieve good performance on the Web.
More specifically, speculative prefetching of data and asynchronous, speculative
pre-execution of subqueries as well as query result caching would be intriguing
approaches to hide latency and provide acceptable response times, but it is still
a major step from existing techniques for data caching and prefetching (e.g, [30])
to the effective use of statistics-based speculation at all levels of a “deep search”
engine.

5 Concluding Remarks

In this paper I have outlined three grand challenges for Web-based information
systems: guaranteed performance, continuous availability, and intelligent search
for information. None of these is truly new. The critical importance of predictable
performance has been stressed also in the strategic report of the US President’s
Information Technology Advisory Board [48], zero-downtime Web services have
been a high-priority goal for the last few years already, and the urgent need for
self-tuning, “trouble-free” information servers has been recognized, for example,
also in [2]. Finally the need for better search engines is something that everybody
realizes almost every day. All three of my grand challenges are included, in some
form or another, also in Jim Gray’s list of important research goals presented in
his Turing Award lecture [21].

The most elusive goal among the outlined challenges clearly is the intelligent
search with guaranteed search result quality. This challenge has been around
since Vannevar Bush’s vision of a world knowledge device coined Memex (see,
e.g., [21]) or may even be traced back to philosophers like Gottfried Leibniz. It
may well take much longer than the next decade to build Web search engines
that can truly find needles in haystacks with result quality as good as the best
human experts could provide with infinite time resources. But ultimately it is the
paramount importance of this problem that dictates tackling it as an absolutely
top-priority grand challenge in computer science.
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