Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Home
Search
Quick Search
Advanced
Fulltext
Browse
Collections
Persons
My eDoc
Login
Name:
Password:
Documentation
Help
Support Wiki
Direct access to
document ID:


          Document History for Document ID 248276

Back to latest document version
Document Version Version Comment Date Status
248276.0 [No comment] 30.03.2009 11:46 Released

ID: 248276.0, MPI für Gravitationsphysik / Quantum Gravity and Unified Theories
Conformal entropy and stationary Killing horizons
Authors:Cvitan, M.; Pallua, S.; Prester, Predrag
Language:English
Date of Publication (YYYY-MM-DD):2006
Title of Journal:Journal of Physics: Conference Series
Volume (in Journal):2006
Issue / Number:33
Start Page:440
End Page:444
Name of Conference/Meeting:Fourth Meeting on Constrained Dynamics and Quantum Gravity
Place of Conference/Meeting:Cala Gonone (Sardinia, Italy)
(Start) Date of Conference/Meeting
 (YYYY-MM-DD):
2005-09-12
End Date of Conference/Meeting 
 (YYYY-MM-DD):
2005-09-16
Review Status:not specified
Audience:Not Specified
Abstract / Description:Using Virasoro algebra approach, black hole entropy formula for a general class of higher curvature Lagrangians with arbitrary dependence on Riemann tensor can be obtained from properties of stationary Killing horizons. The properties used are a consequence of regularity of invariants of Riemann tensor on the horizon. As suggested by an example Lagrangian, eventual generalisation of these results to Lagrangians with derivatives of Riemann tensor, would require assuming regularity of invariants involving derivatives of Riemann tensor and that would lead to additional restrictions on metric functions near horizon.
External Publication Status:published
Document Type:Conference-Paper
Communicated by:Hermann Nicolai
Affiliations:MPI für Gravitationsphysik/Quantum Gravity and Unified Theories
Identifiers:ISSN:1742-6596
DOI:10.1088/1742-6596/33/1/056
Full Text:
You have privileges to view the following file(s):
jpconf6_33_056.pdf  [98,00 Kb] [Comment:Online Journal]