Please note that eDoc will be permanently shut down in the first quarter of 2021!      Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Support Wiki
Direct access to
document ID:

          Document History for Document ID 276217

Back to latest document version
Document Version Version Comment Date Status
276217.0 [No comment] 16.03.2009 10:23 Released

ID: 276217.0, MPI für Meteorologie / Atmosphere in the Earth System
The influence of African air pollution on the regional and global tropospheric chemistry
Authors:Aghedo, Adetutu M.; Schultz, Martin G.; Rast, Sebastian
Date of Publication (YYYY-MM-DD):2007
Title of Journal:Atmospheric Chemistry and Physics
Journal Abbrev.:Atmos. Chem. Phys.
Start Page:1193
End Page:1212
Review Status:Peer-review
Audience:Not Specified
Abstract / Description:We investigate the influence of African biomass burning, biogenic, lightning and anthropogenic emissions on the tropospheric ozone over Africa and globally using a coupled global chemistry climate model. Our model studies indicate that surface ozone concentration may rise by up to 50 ppbv in the burning region during the biomass burning seasons. Biogenic emissions yield between 5–30 ppbv increase in the near surface ozone concentration over tropical Africa. The impact of lightning on surface ozone is negligible, while anthropogenic emissions yield a maximum of 7 ppbv increase in the annual-mean surface ozone concentration over Nigeria, South Africa and Egypt. Our results show that biogenic emissions are the most important African emission source affecting total tropospheric ozone. The influence of each of the African emissions on the global tropospheric ozone burden (TOB) of 384 Tg yields about 9.5 Tg, 19.6 Tg, 9.0 Tg and 4.7 Tg for biomass burning, biogenic, lightning and anthropogenic emissions emitted in Africa respectively. The impact of each of these emission categories on African TOB of 33 Tg is 2.5 Tg, 4.1 Tg, 1.75 Tg and 0.89 Tg respectively, which together represents about 28% of the total TOB calculated over Africa. Our model calculations also suggest that more than 70% of the tropospheric ozone produced by each of the African emissions is found outside the continent, thus exerting a noticeable influence on a large part of the tropical troposphere. Apart from the Atlantic and Indian Ocean, Latin America experiences the largest impact of African emissions, followed by Oceania, the Middle East, Southeast and south-central Asia, northern North America (i.e. the United States and Canada), Europe and north-central Asia, for all the emission categories.
External Publication Status:published
Document Type:Article
Communicated by:Carola Kauhs
Affiliations:MPI für Meteorologie/Atmosphere in the Earth System
MPI für Meteorologie/IMPRS Earth System Modelling
Full Text:
You have privileges to view the following file(s):
acp-7-1193-2007.pdf  [2,00 Mb]