Home News About Us Contact Contributors Disclaimer Privacy Policy Help FAQ

Quick Search
My eDoc
Support Wiki
Direct access to
document ID:

          Document History for Document ID 702242

Back to latest document version
Document Version Version Comment Date Status
702242.0 [No comment] 15.04.2015 09:25 Released

ID: 702242.0, MPI für Dynamik und Selbstorganisation / Hydrodynamik und Strukturbildung
Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating
Authors:Rosman, Christina; Pierrat, Sebastien; Tarantola, Marco; Schneider, David; Sunnick, Eva; Janshoff, Andreas; Sönnichsen, Carsten
Date of Publication (YYYY-MM-DD):2014-12-24
Title of Journal:Beilstein Journal of Nanotechnology
Journal Abbrev.:Beilstein J. Nanotechnol.
Start Page:2479
End Page:2488
Review Status:Peer-review
Audience:Experts Only
Abstract / Description:In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS) was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles) diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.
Free Keywords:basolateral application; cytotoxicity; electric cell–substrate impedance sensing; gold; nanoparticles
External Publication Status:published
Document Type:Article
Communicated by:Folkert Müller-Hoissen
Affiliations:MPI für Dynamik und Selbstorganisation/Hydrodynamik und Strukturbildung
External Affiliations:Institute of Physical Chemistry, University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany;
Fraunhofer Institute for Microelectronic Circuits and Systems (IMS), Finkenstraße 61, 47057 Duisburg, Germany;
Institute of Physical Chemistry, University of Göttingen, Tammannstraße 6, 37077 Göttingen, Germany